打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
WinSock2编程之打造完整的SOCKET池

在Winodows平台上,网络编程的主要接口就是WinSock,目前大多数的Windows平台上的WinSock平台已经升级到2.0版,简称为WinSock2。在WinSock2中扩展了很多很有用的Windows味很浓的SOCKET专用API,为Windows平台用户提供高性能的网络编程支持。这些函数中的大多数已经不再是标准的“Berkeley”套接字模型的API了。使用这些函数的代价就是你不能再将你的网络程序轻松的移植到“尤里平台”(我给Unix +Linux平台的简称)下,反过来因为Windows平台支持标准的“Berkeley”套接字模型,所以你可以将大多数尤里平台下的网络应用移植到Windows平台下。

如果不考虑可移植性(或者所谓的跨平台性),而是着重于应用的性能时,尤其是注重服务器性能时,对于Windows的程序,都鼓励使用WinSock2扩展的一些API,更鼓励使用IOCP模型,因为这个模型是目前Windows平台上比较完美的一个高性能IO编程模型,它不但适用于SOCKET编程,还适用于读写硬盘文件,读写和管理命名管道、邮槽等等。如果再结合Windows线程池,IOCP几乎可以利用当今硬件所有可能的新特性(比如多核,DMA,高速总线等等),本身具有先天的扩展性和可用性。

今天讨论的重点就是SOCKET池。很多VC程序员也许对SOCKET池很陌生,也有些可能很熟悉,那么这里就先讨论下这个概念。

在Windows平台上SOCKET实际上被视作一个内核对象的句柄,很多Windows API在支持传统的HANDLE参数的同时也支持SOCKET,比如有名的CreateIoCompletionPort就支持将SOCKET句柄代替HANDLE参数传入并调用。熟悉Windows内核原理的读者,立刻就会发现,这样的话,我们创建和销毁一个SOCKET句柄,实际就是在系统内部创建了一个内核对象,对于Windows来说这牵扯到从Ring3层到Ring0层的耗时操作,再加上复杂的安全审核机制,实际创建和销毁一个SOCKET内核对象的成本还是蛮高的。尤其对于一些面向连接的SOCKET应用,服务端往往要管理n多个代表客户端通信的SOCKET对象,而且因为客户的变动性,主要面临的大量操作除了一般的收发数据,剩下的就是不断创建和销毁SOCKET句柄,对于一个频繁接入和断开的服务器应用来说,创建和销毁SOCKET的性能代价立刻就会体现出来,典型的例如WEB服务器程序,就是一个需要频繁创建和销毁SOCKET句柄的SOCKET应用。这种情况下我们通常都希望对于断开的SOCKET对象,不是简单的“销毁”了之(很多时候“断开”的含义不一定就等价于“销毁”,可以仔细思考一下),更多时候希望能够重用这个SOCKET对象,这样我们甚至可以事先创建一批SOCKET对象组成一个“池”,在需要的时候“重用”其中的SOCKET对象,不需要的时候将SOCKET对象重新丢入池中即可,这样就省去了频繁创建销毁SOCKET对象的性能损失。在原始的“Berkeley”套接字模型中,想做到这点是没有什么办法的。而幸运的是在Windows平台上,尤其是支持WinSock2的平台上,已经提供了一套完整的API接口用于支持SOCKET池。

对于符合以上要求的SOCKET池,首先需要做到的就是对SOCKET句柄的“回收”,因为创建函数无论在那个平台上都是现成的,而最早能够实现这个功能的WinSock函数就是TransmitFile,如果代替closesocket函数像下面这样调用就可以“回收”一个SOCKET句柄,而不是销毁:(注意“回收”这个功能对于TransmitFile函数来说只是个“副业”。)

TransmitFile(hSocket,NULL,0,0,NULL,NULL,TF_DISCONNECT | TF_REUSE_SOCKET );

注意上面函数的最后一个参数,使用了标志TF_DISCONNECT和TF_REUSE_SOCKET,第一个值表示断开,第二个值则明确的表示“重用”实际上也就是回收这个SOCKET,经过这个处理的SOCKET句柄,就可以直接再用于connect等操作,但是此时我们会发现,这个回收来的SOCKET似乎没什么用,因为其他套接字函数没法直接利用这个回收来的SOCKET句柄。

这时就要WinSock2的一组专用API上场了。我将它们按传统意义上的服务端和客户端分为两组:

一、         服务端:

SOCKET WSASocket(

  __in          int af,

  __in          int type,

  __in          int protocol,

  __in          LPWSAPROTOCOL_INFO lpProtocolInfo,

  __in          GROUP g,

  __in          DWORD dwFlags

);

BOOL AcceptEx(

  __in          SOCKET sListenSocket,

  __in          SOCKET sAcceptSocket,

  __in          PVOID lpOutputBuffer,

  __in          DWORD dwReceiveDataLength,

  __in          DWORD dwLocalAddressLength,

  __in          DWORD dwRemoteAddressLength,

  __out         LPDWORD lpdwBytesReceived,

  __in          LPOVERLAPPED lpOverlapped

);

BOOL DisconnectEx(

  __in          SOCKET hSocket,

  __in          LPOVERLAPPED lpOverlapped,

  __in          DWORD dwFlags,

  __in          DWORD reserved

);

二、         客户端:

SOCKET WSASocket(

  __in          int af,

  __in          int type,

  __in          int protocol,

  __in          LPWSAPROTOCOL_INFO lpProtocolInfo,

  __in          GROUP g,

  __in          DWORD dwFlags

);

BOOL PASCAL ConnectEx(

  __in          SOCKET s,

  __in          const struct sockaddr* name,

  __in          int namelen,

  __in_opt      PVOID lpSendBuffer,

  __in          DWORD dwSendDataLength,

  __out         LPDWORD lpdwBytesSent,

  __in          LPOVERLAPPED lpOverlapped

);

BOOL DisconnectEx(

  __in          SOCKET hSocket,

  __in          LPOVERLAPPED lpOverlapped,

  __in          DWORD dwFlags,

  __in          DWORD reserved

);

注意观察这些函数,似乎和传统的“Berkeley”套接字模型中的一些函数“大同小异”,其实仔细观察他们的参数,就已经可以发现一些调用他们的“玄机”了。

首先我们来看AcceptEx函数,与accept函数不同,它需要两个SOCKET句柄作为参数,头一个参数的含义与accept函数的相同,而第二个参数的意思就是accept函数返回的那个代表与客户端通信的SOCKET句柄,在传统的accept内部,实际在返回那个代表客户端的SOCKET时,是在内部调用了一个SOCKET的创建动作,先创建这个SOCKET然后再“accept”让它变成代表客户端连接的SOCKET,而AcceptEx函数就在这里“扩展”(实际上是“阉割”才对)accept函数,省去了内部那个明显的创建SOCKET的动作,而将这个创建动作交给最终的调用者自己来实现。AcceptEx要求调用者创建好那个sAcceptSocket句柄然后传进去,这时我们立刻发现,我们回收的那个SOCKET是不是也可以传入呢?答案是肯定的,我们就是可以利用这个函数传入那个“回收”来的SOCKET句柄,最终实现服务端的SOCKET重用。

这里需要注意的就是,AcceptEx函数必须工作在非阻塞的IOCP模型下,同时即使AcceptEx函数返回了,也不代表客户端连接进来或者连接成功了,我们必须依靠它的“完成通知”才能知道这个事实,这也是AcceptEx函数区别于accept这个阻塞方式函数的最大之处。通常可以利用AcceptEx的非阻塞特性和IOCP模型的优点,一次可以“预先”发出成千上万个AcceptEx调用,“等待”客户端的连接。对于习惯了accept阻塞方式的程序员来说,理解AcceptEx的工作方式还是需要费一些周折的。下面的例子就演示了如何一次调用多个AcceptEx:

//批量创建SOCKET,并调用对应的AcceptEx

for(UINT i = 0; i < 1000; i++)

{//调用1000次

//创建与客户端通讯的SOCKET,注意SOCKET的创建方式

skAccept = ::WSASocket(AF_INET,

                   SOCK_STREAM,

                   IPPROTO_TCP,

                   NULL,

                   0,

                   WSA_FLAG_OVERLAPPED);

if (INVALID_SOCKET == skAccept)

{

    throw CGRSException((DWORD)WSAGetLastError());

}

//创建一个自定义的OVERLAPPED扩展结构,使用IOCP方式调用

pAcceptOL = new CGRSOverlappedData(GRS_OP_ACCEPT

,this,skAccept,NULL);

pAddrBuf = pAcceptOL->GetAddrBuf();

//4、发出AcceptEx调用

//注意将AcceptEx函数接收连接数据缓冲的大小设定成了0,这将导致此函数立即返回,虽然与

//不设定成0的方式而言,这导致了一个较低下的效率,但是这样提高了安全性,所以这种效率

//牺牲是必须的

if(!AcceptEx(m_skServer,

                   skAccept,

                   pAddrBuf->m_pBuf,

                   0,//将接收缓冲置为0,令AcceptEx直接返回,防止拒绝服务攻击

                   GRS_ADDRBUF_SIZE,

                   GRS_ADDRBUF_SIZE,

                   NULL,

                   (LPOVERLAPPED)pAcceptOL))

{

int iError = WSAGetLastError();

if( ERROR_IO_PENDING != iError

     && WSAECONNRESET != iError )

{

     if(INVALID_SOCKET != skAccept)

     {

         ::closesocket(skAccept);

         skAccept = INVALID_SOCKET;

     }

     if( NULL != pAcceptOL)

     {

             GRS_ISVALID(pAcceptOL,sizeof(CGRSOverlappedData));

delete pAcceptOL;

     pAcceptOL = NULL;

     }

  }

}

}

以上的例子只是简单的演示了AcceptEx的调用,还没有涉及到真正的“回收重用”这个主题,那么下面的例子就演示了如何重用一个SOCKET句柄:

if(INVALID_SOCKET == skClient)

{

throw CGRSException(_T("SOCKET句柄是无效的!"));

}

OnPreDisconnected(skClient,pUseData,0);

CGRSOverlappedData*pData

= new GRSOverlappedData(GRS_OP_DISCONNECTEX

,this,skClient,pUseData);

//回收而不是关闭后再创建大大提高了服务器的性能

DisconnectEx(skClient,&pData->m_ol,TF_REUSE_SOCKET,0); 

......

      //在接收到DisconnectEx函数的完成通知之后,我们就可以重用这个SOCKET了

CGRSAddrbuf*pBuf = NULL;

pNewOL = new CGRSOverlappedData(GRS_OP_ACCEPT

,this,skClient,pUseData);

pBuf = pNewOL->GetAddrBuf();

//把这个回收的SOCKET重新丢进连接池

if(!AcceptEx(m_skServer,skClient,pBuf->m_pBuf,

                 0,//将接收缓冲置为0,令AcceptEx直接返回,防止拒绝服务攻击

                 GRS_ADDRBUF_SIZE, GRS_ADDRBUF_SIZE,

                 NULL,(LPOVERLAPPED)pNewOL))

{

int iError = WSAGetLastError();

    if( ERROR_IO_PENDING != iError

        && WSAECONNRESET != iError )

    {

        throw CGRSException((DWORD)iError);

     }

}

//注意在这个SOCKET被重新利用后,重新与IOCP绑定一下,该操作会返回一个已设置的错误,这个错误直接被忽略即可

::BindIoCompletionCallback((HANDLE)skClient

,Server_IOCPThread, 0);

 

至此回收重用SOCKET的工作也就结束了,以上的过程实际理解了IOCP之后就比较好理解了,例子的最后我们使用了BindIoCompletionCallback函数重新将SOCKET丢进了IOCP线程池中,实际还可以再次使用CreateIoCompletionPort函数达到同样的效果,这里列出这一步就是告诉大家,不要忘了再次绑定一下完成端口和SOCKET。

    对于客户端来说,可以使用ConnectEx函数来代替connect函数,与AcceptEx函数相同,ConnectEx函数也是以非阻塞的IOCP方式工作的,唯一要注意的就是在WSASocket调用之后,在ConnectEx之前要调用一下bind函数,将SOCKET提前绑定到一个本地地址端口上,当然回收重用之后,就无需再次绑定了,这也是ConnectEx较之connect函数高效的地方之一。

   与AcceptEx函数类似,也可以一次发出成千上万个ConnectEx函数的调用,可以连接到不同的服务器,也可以连接到相同的服务器,连接到不同的服务器时,只需提供不同的sockaddr即可。

    通过上面的例子和讲解,大家应该对SOCKET池概念以及实际的应用有个大概的了解了,当然核心仍然是理解了IOCP模型,否则还是寸步难行。

在上面的例子中,回收SOCKET句柄主要使用了DisconnectEx函数,而不是之前介绍的TransmitFile函数,为什么呢?因为TransmitFile函数在一些情况下会造成死锁,无法正常回收SOCKET,毕竟不是专业的回收重用SOCKET函数,我就遇到过好几次死锁,最后偶然的发现了DisconnectEx函数这个专用的回收函数,调用之后发现比TransmitFile专业多了,而且不管怎样都不会死锁。

最后需要补充的就是这几个函数的调用方式,不能像传统的SOCKET API那样直接调用它们,而需要使用一种间接的方式来调用,尤其是AcceptEx和DisconnectEx函数,下面给出了一个例子类,用于演示如何动态载入这些函数并调用之:

class CGRSMsSockFun

{

public:

CGRSMsSockFun(SOCKET skTemp = INVALID_SOCKET)

{

     if( INVALID_SOCKET != skTemp )

     {

       LoadAllFun(skTemp);

      }

}

public:

virtual ~CGRSMsSockFun(void)

{

}

protected:

BOOL LoadWSAFun(SOCKET& skTemp,GUID&funGuid,void*&pFun)

{

     DWORD dwBytes = 0;

     BOOL bRet = TRUE;

     pFun = NULL;

     BOOL bCreateSocket = FALSE;

     try

     {

       if(INVALID_SOCKET == skTemp)

       {

          skTemp = ::WSASocket(AF_INET,SOCK_STREAM,

             IPPROTO_TCP,NULL,0,WSA_FLAG_OVERLAPPED);

bCreateSocket = (skTemp != INVALID_SOCKET);

       }

if(INVALID_SOCKET == skTemp)

       {

          throw CGRSException((DWORD)WSAGetLastError());

       }

       if(SOCKET_ERROR == ::WSAIoctl(skTemp,

                SIO_GET_EXTENSION_FUNCTION_POINTER,

                &funGuid,sizeof(funGuid),

                &pFun,sizeof(pFun),&dwBytes,NULL,

                NULL))

       {

             pFun = NULL;

             throw CGRSException((DWORD)WSAGetLastError());

       }

  }

  catch(CGRSException& e)

  {

      if(bCreateSocket)

      {

        ::closesocket(skTemp);

      }

  }

  return NULL != pFun;

}

protected:

LPFN_ACCEPTEX m_pfnAcceptEx;

LPFN_CONNECTEX m_pfnConnectEx;

LPFN_DISCONNECTEX m_pfnDisconnectEx;

LPFN_GETACCEPTEXSOCKADDRS m_pfnGetAcceptExSockaddrs;

LPFN_TRANSMITFILE m_pfnTransmitfile;

LPFN_TRANSMITPACKETS m_pfnTransmitPackets;

LPFN_WSARECVMSG m_pfnWSARecvMsg;

protected:

BOOL LoadAcceptExFun(SOCKET &skTemp)

{

     GUID GuidAcceptEx = WSAID_ACCEPTEX;

     return LoadWSAFun(skTemp,GuidAcceptEx

,(void*&)m_pfnAcceptEx);

}

BOOL LoadConnectExFun(SOCKET &skTemp)

{

     GUID GuidAcceptEx = WSAID_CONNECTEX;

     return LoadWSAFun(skTemp,GuidAcceptEx

,(void*&)m_pfnConnectEx);

}

BOOL LoadDisconnectExFun(SOCKET&skTemp)

{

     GUID GuidDisconnectEx = WSAID_DISCONNECTEX;

     return LoadWSAFun(skTemp,GuidDisconnectEx

,(void*&)m_pfnDisconnectEx);

}

BOOL LoadGetAcceptExSockaddrsFun(SOCKET &skTemp)

{

     GUID GuidGetAcceptExSockaddrs

= WSAID_GETACCEPTEXSOCKADDRS;

     return LoadWSAFun(skTemp,GuidGetAcceptExSockaddrs

,(void*&)m_pfnGetAcceptExSockaddrs);

}

BOOL LoadTransmitFileFun(SOCKET&skTemp)

{

     GUID GuidTransmitFile = WSAID_TRANSMITFILE;

     return LoadWSAFun(skTemp,GuidTransmitFile

,(void*&)m_pfnTransmitfile);

}

BOOL LoadTransmitPacketsFun(SOCKET&skTemp)

{

     GUID GuidTransmitPackets = WSAID_TRANSMITPACKETS;

     return LoadWSAFun(skTemp,GuidTransmitPackets

,(void*&)m_pfnTransmitPackets);

}

BOOL LoadWSARecvMsgFun(SOCKET&skTemp)

{

     GUID GuidTransmitPackets = WSAID_TRANSMITPACKETS;

     return LoadWSAFun(skTemp,GuidTransmitPackets

,(void*&)m_pfnWSARecvMsg);

}

public:

BOOL LoadAllFun(SOCKET skTemp)

{//注意这个地方的调用顺序,是根据服务器的需要,并结合了表达式副作用

  //而特意安排的调用顺序

  return (LoadAcceptExFun(skTemp) &&

             LoadGetAcceptExSockaddrsFun(skTemp) &&

             LoadTransmitFileFun(skTemp) &&

             LoadTransmitPacketsFun(skTemp) &&

             LoadDisconnectExFun(skTemp) &&

             LoadConnectExFun(skTemp) &&

             LoadWSARecvMsgFun(skTemp));

}

 

public:

GRS_FORCEINLINE BOOL AcceptEx (

          SOCKET sListenSocket,

          SOCKET sAcceptSocket,

          PVOID lpOutputBuffer,

          DWORD dwReceiveDataLength,

          DWORD dwLocalAddressLength,

          DWORD dwRemoteAddressLength,

          LPDWORD lpdwBytesReceived,

          LPOVERLAPPED lpOverlapped

          )

{

     GRS_ASSERT(NULL != m_pfnAcceptEx);

     return m_pfnAcceptEx(sListenSocket,

             sAcceptSocket,lpOutputBuffer,

             dwReceiveDataLength,dwLocalAddressLength,

             dwRemoteAddressLength,lpdwBytesReceived,

             lpOverlapped);

}

GRS_FORCEINLINE BOOL ConnectEx(

          SOCKET s,const struct sockaddr FAR *name,

          int namelen,PVOID lpSendBuffer,

          DWORD dwSendDataLength,LPDWORD lpdwBytesSent,

          LPOVERLAPPED lpOverlapped

          )

{

     GRS_ASSERT(NULL != m_pfnConnectEx);

     return m_pfnConnectEx(

             s,name,namelen,lpSendBuffer,

             dwSendDataLength,lpdwBytesSent,

             lpOverlapped

             );

}

GRS_FORCEINLINE BOOL DisconnectEx(

          SOCKET s,LPOVERLAPPED lpOverlapped,

          DWORD  dwFlags,DWORD  dwReserved

          )

{

     GRS_ASSERT(NULL != m_pfnDisconnectEx);

     return m_pfnDisconnectEx(s,

             lpOverlapped,dwFlags,dwReserved);

}

GRS_FORCEINLINE VOID GetAcceptExSockaddrs (

          PVOID lpOutputBuffer,

          DWORD dwReceiveDataLength,

          DWORD dwLocalAddressLength,

          DWORD dwRemoteAddressLength,

          sockaddr **LocalSockaddr,

          LPINT LocalSockaddrLength,

          sockaddr **RemoteSockaddr,

          LPINT RemoteSockaddrLength

          )

{

     GRS_ASSERT(NULL != m_pfnGetAcceptExSockaddrs);

     return m_pfnGetAcceptExSockaddrs(

          lpOutputBuffer,dwReceiveDataLength,

          dwLocalAddressLength,dwRemoteAddressLength,

          LocalSockaddr,LocalSockaddrLength,

          RemoteSockaddr,RemoteSockaddrLength

          );

}

GRS_FORCEINLINE BOOL TransmitFile(

     SOCKET hSocket,HANDLE hFile,

     DWORD nNumberOfBytesToWrite,

     DWORD nNumberOfBytesPerSend,

     LPOVERLAPPED lpOverlapped,

     LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,

     DWORD dwReserved

     )

{

     GRS_ASSERT(NULL != m_pfnTransmitfile);

     return m_pfnTransmitfile(

             hSocket,hFile,nNumberOfBytesToWrite,

             nNumberOfBytesPerSend,lpOverlapped,

             lpTransmitBuffers,dwReserved

             );

}

GRS_FORCEINLINE BOOL TransmitPackets(

     SOCKET hSocket,                            

     LPTRANSMIT_PACKETS_ELEMENT lpPacketArray,                               

     DWORD nElementCount,DWORD nSendSize,               

     LPOVERLAPPED lpOverlapped,DWORD dwFlags                              

     )

{

     GRS_ASSERT(NULL != m_pfnTransmitPackets);

     return m_pfnTransmitPackets(

             hSocket,lpPacketArray,nElementCount,

nSendSize,lpOverlapped,dwFlags

             );

}

GRS_FORCEINLINE INT WSARecvMsg(

          SOCKET s,LPWSAMSG lpMsg,

          LPDWORD lpdwNumberOfBytesRecvd,

          LPWSAOVERLAPPED lpOverlapped,

          LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

          )

{

     GRS_ASSERT(NULL != m_pfnWSARecvMsg);

     return m_pfnWSARecvMsg(

             s,lpMsg,lpdwNumberOfBytesRecvd,

             lpOverlapped,lpCompletionRoutine

             );

}

/*WSAID_ACCEPTEX

  WSAID_CONNECTEX

  WSAID_DISCONNECTEX

  WSAID_GETACCEPTEXSOCKADDRS

  WSAID_TRANSMITFILE

  WSAID_TRANSMITPACKETS

  WSAID_WSARECVMSG

  WSAID_WSASENDMSG */

};

这个类的使用非常简单,只需要声明一个类的对象,然后调用其成员AcceptEx、DisconnectEx函数等即可,参数与这些函数的MSDN声明方式完全相同,除了本文中介绍的这些函数外,这个类还包含了很多其他的Winsock2函数,那么都应该按照这个类中演示的这样来动态载入后再行调用,如果无法载入通常说明你的环境中没有Winsock2函数库,或者是你初始化的不是2.0版的Winsock环境。

这个类是本人完整类库的一部分,如要使用需要自行修改一些地方,如果不知如何修改或遇到什么问题,可以直接跟帖说明,我会不定期回答大家的问题,这个类可以免费使用、分发、修改,可以用于任何商业目的,但是对于使用后引起的任何问题,本人概不负责,有问题请跟帖。关于AcceptEx以及其他一些函数,包括本文中没有介绍到得函数,我会在后续的一些专题文章中进行详细深入的介绍,敬请期待。如果你有什么疑问,或者想要了解什么也请跟帖说明,我会在后面的文章中尽量说明。

IOCP+WinSock2新函数打造高性能SOCKET池  

在前一篇文章《WinSock2编程之打造完整的SOCKET池 》中,介绍了WinSock2的一些新函数,并重点详细介绍了什么是SOCKET池,有了这个概念,现在就接着展开更深入的讨论。

首先这里要重点重申一下就是,SOCKET池主要指的是使用面向连接的协议的情况下,最常用的就是需要管理大量的TCP连接的时候。常见的就是Web服务器、FTP服务器等。

下面就分步骤的详细介绍如何最终实现SOCKET池。

 

一、WinSock2环境的初始化:

 

要使用WinSock2就需要先初始化Socket2.0的环境,不废话,上代码:

WSADATA wd = {0};

int iError = WSAStartup(MAKEWORD(2,0), &wd);

if( 0 != iError )

{//出现错误,最好跟踪看下错误码是多少

       return FALSE;

}

if ( LOBYTE(lpwsaData->wVersion) != 2 )

{//非2.0以上环境 退出了事 可能是可怜的WinCE系统

       WSACleanup();

       return FALSE;

}

最后再不使用WinSock之后都要记得调用一下WSACleanup()这个函数;

 

二、装载WinSock2函数:

 

上一篇文章中给出了一个装载WinSock2函数的类,这里分解介绍下装载的具体过程,要提醒的就是,凡是类里面演示了动态装载的函数,最好都像那样动态载入,然后再调用。以免出现上网发帖跪求高手赐教为什么AcceptEx函数无法编译通过等问题。看完这篇文章详细你不会再去发帖找答案了,呵呵呵,好了,上代码:

//定义一个好用的载入函数 摘自CGRSMsSockFun 类

BOOL LoadWSAFun(GUID&funGuid,void*& pFun)

{//本函数利用参数返回函数指针

       DWORD dwBytes = 0;

       pFun = NULL;

       //随便创建一个SOCKET供WSAIoctl使用 并不一定要像下面这样创建

       SOCKET skTemp = ::WSASocket(AF_INET,

                     SOCK_STREAM, IPPROTO_TCP, NULL,

                     0, WSA_FLAG_OVERLAPPED);

       if(INVALID_SOCKET == skTemp)

       {//通常表示没有正常的初始化WinSock环境

              return FALSE;

       }

       ::WSAIoctl(skTemp, SIO_GET_EXTENSION_FUNCTION_POINTER,

                     &funGuid,sizeof(funGuid),&pFun,

                     sizeof(pFun), &dwBytes, NULL,NULL);

       ::closesocket(skTemp);

       return NULL != pFun;

}

//演示如何动态载入AcceptEx函数

......

LPFN_ACCEPTEX pfnAcceptEx; //首先声明函数指针

GUID GuidAcceptEx = WSAID_ACCEPTEX;

LoadWSAFun(GuidAcceptEx,(void*&)pfnAcceptEx); //载入

......

//使用丰富的参数调用

......

pfnAcceptEx(sListenSocket,sAcceptSocket,lpOutputBuffer,

              dwReceiveDataLength,dwLocalAddressLength,dwRemoteAddressLength,

lpdwBytesReceived,lpOverlapped);

              //或者:

              SOCKET skAccept = ::WSASocket(AF_INET,SOCK_STREAM,IPPROTO_TCP,

                                                 NULL, 0,WSA_FLAG_OVERLAPPED);

              PVOID pBuf = new BYTE[sizeof(sockaddr_in) + 16];

              pfnAcceptEx(skServer, skAccept,pBuf,

0,//将接收缓冲置为0,令AcceptEx直接返回,防止拒绝服务攻击

                     sizeof(sockaddr_in) + 16, sizeof(sockaddr_in) + 16, NULL,

                                                 (LPOVERLAPPED)pAcceptOL);

......

       以上是一个简单的演示,如何动态载入一个WinSock2扩展函数,并调用之,其它函数的详细例子可以看前一篇文章中CGRSMsSockFun类的实现部分。如果使用CGRSMsSockFun 类的话当然更简单,像下面这样调用即可:

              CGRSMsSockFun MsSockFun;

              MsSockFun.AcceptEx(skServer, skAccept,pBuf,

0,//将接收缓冲置为0,令AcceptEx直接返回,防止拒绝服务攻击

                     sizeof(sockaddr_in) + 16, sizeof(sockaddr_in) + 16, NULL,

                     (LPOVERLAPPED)pAcceptOL);

如果要使用这个类,那么需要一些修改,主要是异常处理部分,自己注释掉,或者用其它异常代替掉即可,这个对于有基础的读者来说不是什么难事。

 

三、定义OVERLAPPED结构:

 

要想“IOCP”就要自定义OVERLAPPED,这是彻底玩转IOCP的不二法门,可以这么说:“江湖上有多少种自定义的OVERLAPPED派生结构体,就有多少种IOCP的封装!”

OVERLAPPED本身是Windows IOCP机制内部需要的一个结构体,主要用于记录每个IO操作的“完成状态”,其内容对于调用者来说是没有意义的,但是很多时候我们把它当做一个“火车头”,因为它可以方便的把每个IO操作的相关数据简单的“从调用处运输到完成回调函数中”,这是一个非常有用的特性,哪么如何让这个火车头发挥运输的作用呢?其实很简单:让它成为一个自定义的更大结构体的第一个成员。然后用强制类型转换,将自定义的结构体转换成OVERLAPPED指针即可。当然不一定非要是新结构体的第一个成员,也可以是任何第n个成员,这时使用VC头文件中预定义的一个宏CONTAINING_RECORD再反转回来即可。

说到这里一些C++基础差一点的读者估计已经很头晕了,更不知道我再说什么,那么我就将好人做到底吧,来解释下这个来龙去脉。

首先就以我们将要使用的AcceptEx函数为例子看看它的原型吧(知道孙悟空的火眼金睛用来干嘛的吗?就是用来看原型的,哈哈哈):

BOOL AcceptEx(

  __in          SOCKET sListenSocket,

  __in          SOCKET sAcceptSocket,

  __in          PVOID lpOutputBuffer,

  __in          DWORD dwReceiveDataLength,

  __in          DWORD dwLocalAddressLength,

  __in          DWORD dwRemoteAddressLength,

  __out         LPDWORD lpdwBytesReceived,

  __in          LPOVERLAPPED lpOverlapped

);

注意最后一个参数,是一个OVERLAPPED结构体的指针(LP的意思是Long Pointer,即指向32位地址长指针,注意不是“老婆”拼音的缩写),本身这个参数的意思就是分配一块OVERLAPPED大小的内存,在IOCP调用方式下传递给AcceptEx函数用,调用者不用去关心里面的任何内容,而在完成过程中(很多时候是另一个线程中的事情了),通常调用GetQueuedCompletionStatus函数后,会再次得到这个指针,接着让我们也看看它的原型:

BOOL WINAPI GetQueuedCompletionStatus(

  __in          HANDLE CompletionPort,

  __out         LPDWORD lpNumberOfBytes,

  __out         PULONG_PTR lpCompletionKey,

  __out         LPOVERLAPPED* lpOverlapped,

  __in          DWORD dwMilliseconds

);

注意这里的LPOVERLAPPED多了一个*变成了指针的指针,并且前面的说明很清楚Out!很明白了吧,不明白就真的Out了。这里就可以重新得到调用AcceptEx传入的LPOVERLAPPED指针,也就是得到了这个“火车头”,因为只是一个指针,并没有详细的限定能有多大,所以可以在火车头的后面放很多东西。

再仔细观察GetQueuedCompletionStatus函数的参数,会发现,这时只能知道一个IO操作结束了,但是究竟是哪个操作结束了,或者是哪个SOCKET句柄上的操作结束了,并没有办法知道。通常这个信息非常重要,因为只有在IO操作实际完成之后才能释放发送或接收等操作的缓冲区。

这些信息可以定义成如下的一个扩展OVERLAPPED结构:

struct MYOVERLAPPED

{

    OVERLAPPED m_ol;          

    int                    m_iOpType;      

//操作类型 0=AcceptEx 1=DisconnectEx       2=ConnectEx 3=WSARecv等等

    SOCKET          m_skServer;       //服务端SOCKET

    SOCKET         m_skClient;        //客户端SOCKET

    LPVOID           m_pBuf;            //本次IO操作的缓冲指针

    ......                                           //其它需要的信息

};

使用时:

MYOVERLAPPED* pMyOL = new MYOVERLAPPED;

ZeroMemory(pMyOL,sizeof(MYOVERLAPPED));

pMyOL->m_iOpType = 0;        //AcceptEx操作

pMyOL->m_skServer = skServer;

pMyOL->m_skClient = skClient;

BYTE* pBuf = new BYTE[256];//一个缓冲

.................. //朝缓冲中写入东西

pMyOL->m_pBuf = pBuf;

...............//其它的代码

AcceptEx(skServer, skClient,pBuf,

0,//将接收缓冲置为0,令AcceptEx直接返回                     

256,256,NULL,(LPOVERLAPPED)pMyOL));//注意最后这个强制类型转换

 

       在完成过程回调线程函数中,这样使用:

 

UINT CALLBACK Client_IOCPThread(void* pParam)

       {//IOCP线程函数

              .....................

              DWORD dwBytesTrans = 0;

              DWORD dwPerData = 0;

              LPOVERLAPPED lpOverlapped = NULL;

             

              while(1)

              {//又见死循环 呵呵呵

                     BOOL bRet = GetQueuedCompletionStatus(

                            pThis->m_IOCP,&dwBytesTrans,&dwPerData,

                            &lpOverlapped,INFINITE);

                     if( NULL == lpOverlapped )

                     {//没有真正的完成

                            SleepEx(20,TRUE);//故意置成可警告状态

                            continue;

                     }

                     //找回“火车头”以及后面的所有东西

                     MYOVERLAPPED*  pOL = CONTAINING_RECORD(lpOverlapped

, MYOVERLAPPED, m_ol);

                     switch(pOL->m_iOpType)

{

case 0: //AcceptEx结束

{//有链接进来了 SOCKET句柄就是 pMyOL->m_skClient

   

}

break;

............................

}

........................

} //end while

........................

       }//end fun

 

至此,关于这个“火车头”如何使用,应该是看明白了,其实就是从函数传入,又由函数返回。只不过其间可能已经转换了线程环境,是不同的线程了。

这里再补充一个AcceptEx容易被遗漏的一个细节问题,那就是在AcceptEx完成返回之后,如下在那个连入的客户端SOCKET上调用一下:

       int nRet = ::setsockopt(

              pOL->m_skClient,SOL_SOCKET,SO_UPDATE_ACCEPT_CONTEXT,

              (char *)&pOL->m_skServer,sizeof(SOCKET));

这样才可以继续在这个代表客户端连接的pOL->m_skClient上继续调用WSARecv和WSASend。

另外,在AcceptEx完成之后,通常可以用:

LPSOCKADDR addrHost = NULL;      //服务端地址

LPSOCKADDR addrClient = NULL;     //客户端地址

int lenHost = 0;

int lenClient = 0;

GetAcceptExSockaddrs(

       pOL->m_pBuf,0,sizeof(sockaddr_in) + 16,sizeof(sockaddr_in) + 16,

       (LPSOCKADDR*) &addrHost,&lenHost,(LPSOCKADDR*) &addrClient,&lenClient);

这样来得到连入的客户端地址,以及连入的服务端地址,通常这个地址可以和这个客户端的SOCKET绑定在一起用map或hash表保存,方便查询,就不用再调用那个getpeername得到客户端的地址了。要注意的是GetAcceptExSockaddrs也是一个WinSock2扩展函数,专门配合AcceptEx使用的,需要像AcceptEx那样动态载入一下,然后再调用,详情请见前一篇文章中的CGRSMsSockFun类。

至此AcceptEx算讨论完整了,OVERLAPPED的派生定义也讲完了,让我们继续下一步。

 

四、编写线程池回调函数:

 

在讨论扩展定义OVERLAPPED结构体时,给出了非线程池版的线程函数的大概框架,也就是传统IOCP使用的自建线程使用方式,这种方式要自己创建完成端口句柄,自己将SOCKET句柄绑定到完成端口,这里就不在赘述,主要介绍下调用BindIoCompletionCallback函数时,应如何编写这个线程池的回调函数,其实它与前面那个线程函数是很类似的。先来看看回调函数长个什么样子:

VOID CALLBACK FileIOCompletionRoutine(

  [in]                 DWORD dwErrorCode,

  [in]                 DWORD dwNumberOfBytesTransfered,

  [in]                 LPOVERLAPPED lpOverlapped

);

第一个参数就是一个错误码,如果是0恭喜你,操作一切ok,如果有错也不要慌张,前一篇文章中已经介绍了如何翻译和看懂这个错误码。照着做就是了。

第二个参数就是说这次IO操作一共完成了多少字节的数据传输任务,这个字段有个特殊含义,如果你发现一个Recv操作结束了,并且这个参数为0,那么就是说,客户端断开了连接(注意针对的是TCP方式,整个SOCKET池就是为TCP方式设计的)。如果这个情况发生了,在SOCKET池中就该回收这个SOCKET句柄。

第三个参数现在不用多说了,立刻就知道怎么用它了。跟刚才调用GetQueuedCompletionStatus函数得到的指针是一个含义。

下面就来看一个实现这个回调的例子:

VOID CALLBACK MyIOCPThread(DWORD dwErrorCode

,DWORD dwBytesTrans,LPOVERLAPPED lpOverlapped)

       {//IOCP回调函数

              .....................

              if( NULL == lpOverlapped )

              {//没有真正的完成

                     SleepEx(20,TRUE);//故意置成可警告状态

                     return;

              }

              //找回“火车头”以及后面的所有东西

              MYOVERLAPPED*  pOL = CONTAINING_RECORD(lpOverlapped

, MYOVERLAPPED, m_ol);

              switch(pOL->m_iOpType)

{

case 0: //AcceptEx结束

{//有链接进来了 SOCKET句柄就是 pMyOL->m_skClient

   

}

break;

............................

}

........................

       }//end fun

 

看起来很简单吧?好像少了什么?对了那个该死的循环,这里不用了,因为这个是由线程池回调的一个函数而已,线程的活动状态完全由系统内部控制,只管认为只要有IO操作完成了,此函数就会被调用。这里关注的焦点就完全的放到了完成之后的操作上,而什么线程啊,完成端口句柄啊什么的就都不需要了(甚至可以忘记)。

这里要注意一个问题,正如在《IOCP编程之“双节棍”》中提到的,这个函数执行时间不要过长,否则会出现掉线啊,连接不进来啊等等奇怪的事情。

另一个要注意的问题就是,这个函数最好套上结构化异常处理,尽可能的多拦截和处理异常,防止系统线程池的线程因为你糟糕的回调函数而壮烈牺牲,如果加入了并发控制,还要注意防止死锁,不然你的服务器会“死”的很难看。

理论上来说,你尽可以把这个函数看做一个与线程池函数等价的函数,只是他要尽可能的“短”(指执行时间)而紧凑(结构清晰少出错)。

最后,回调函数定义好了,就可以调用BindIoCompletionCallback函数,将一个SOCKET句柄丢进完成端口的线程池了:

BindIoCompletionCallback((HANDLE)skClient,MyIOCPThread,0);

注意最后一个参数到目前为止,你就传入0吧。这个函数的神奇就是不见了CreateIoCompletionPort的调用,不见了CreateThread的调用,不见了GetQueuedCompletionStatus等等的调用,省去了n多繁琐且容易出错的步骤,一个函数就全部搞定了。

 

五、服务端调用:

 

以上的所有步骤在完全理解后,最终让我们看看SOCKET池如何实现之。

1、按照传统,要先监听到某个IP的指定端口上:

SOCKADDR_IN    saServer = {0};

//创建监听Socket

SOCKET skServer = ::WSASocket(AF_INET, SOCK_STREAM, IPPROTO_IP

, NULL, 0, WSA_FLAG_OVERLAPPED);

//把监听SOCKET扔进线程池,这个可以省略               ::BindIoCompletionCallback((HANDLE)skServer,MyIOCPThread, 0);

//必要时打开SO_REUSEADDR属性,重新绑定到这个监听地址

BOOL   bReuse=TRUE;                  ::setsockopt(m_skServer,SOL_SOCKET,SO_REUSEADDR

,(LPCSTR)&bReuse,sizeof(BOOL));

saServer.sin_family = AF_INET;

saServer.sin_addr.s_addr = INADDR_ANY;

// INADDR_ANY这个值的魅力是监听所有本地IP的相同端口

saServer.sin_port = htons(80);      //用80得永生

::bind(skServer,(LPSOCKADDR)&saServer,sizeof(SOCKADDR_IN));

//监听,队列长为默认最大连接SOMAXCONN

listen(skServer, SOMAXCONN);

 

2、就是发出一大堆的AcceptEx调用:

for(UINT i = 0; i < 1000; i++)

{//调用1000次

//创建与客户端通讯的SOCKET,注意SOCKET的创建方式

skAccept = ::WSASocket(AF_INET,

                                              SOCK_STREAM,

                                              IPPROTO_TCP,

                                              NULL,

                                              0,

                                              WSA_FLAG_OVERLAPPED);

//2011-07-28:以上为原文,下面为改写后的代码

skClient = ::WSASocket(AF_INET,SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED );

//丢进线程池中

BindIoCompletionCallback((HANDLE)skAccept ,MyIOCPThread,0);

//2011-07-28:以上为原文写法,下面为修改后代码,主要为了更正变量名,方便大家理解

BindIoCompletionCallback((HANDLE)skClient ,MyIOCPThread,0);

//创建一个自定义的OVERLAPPED扩展结构,使用IOCP方式调用

pMyOL= new MYOVERLAPPED;

pMyOL->m_iOpType = 0;        //AcceptEx操作

pMyOL->m_skServer = skServer;

pMyOL->m_skClient = skClient;

BYTE* pBuf = new BYTE[256];//一个缓冲

ZeroMemory(pBuf,256*sizeof(BYTE));

pMyOL->m_pBuf = pBuf;

//发出AcceptEx调用

//注意将AcceptEx函数接收连接数据缓冲的大小设定成了0

//这将导致此函数立即返回,虽然与不设定成0的方式而言,

//这导致了一个较低下的效率,但是这样提高了安全性

//所以这种效率牺牲是必须的

//=================================================================================

//2011-07-28日修改了下面的代码 把原来的第二个参数skAccept 改为 skClient 为方便大家阅读和理解

AcceptEx(skServer, skClient,pBuf,

    0,//将接收缓冲置为0,令AcceptEx直接返回,防止拒绝服务攻击

    256,256,NULL,(LPOVERLAPPED)pMyOL);

 

}

这样就有1000个AcceptEx在提前等着客户端的连接了,即使1000个并发连接也不怕了,当然如果再BT点那么就放1w个,什么你要放2w个?那就要看看你的这个IP段的端口还够不够了,还有你的系统内存够不够用。一定要注意同一个IP地址上理论上端口最大值是65535,也就是6w多个,这个要合理的分派,如果并发管理超过6w个以上的连接时,怎么办呢?那就再插块网卡租个新的IP,然后再朝那个IP端绑定并监听即可。因为使用了INADDR_ANY,所以一监听就是所有本地IP的相同端口,如果服务器的IP有内外网之分,为了安全和区别起见可以明确指定监听哪个IP,单IP时就要注意本IP空闲端口的数量问题了。

 

3、AcceptEx返回后,也就是线程函数中,判定是AcceptEx操作返回后,首先需要的调用就是:

GetAcceptExSockaddrs(pBuf,0,sizeof(sockaddr_in) + 16,

       sizeof(sockaddr_in) + 16,(LPSOCKADDR*) &addrHost,&lenHost,

       (LPSOCKADDR*) &addrClient,&lenClient);

int nRet = ::setsockopt(pOL->m_skClient, SOL_SOCKET,

       SO_UPDATE_ACCEPT_CONTEXT,(char *)&m_skServer,sizeof(m_skServer));

之后就可以WSASend或者WSARecv了。

       4、这些调用完后,就可以在这个m_skClient上收发数据了,如果收发数据结束或者IO错误,那么就回收SOCKET进入SOCKET池:

       DisconnectEx(m_skClient,&pData->m_ol, TF_REUSE_SOCKET, 0);

       5、当DisconnectEx函数完成操作之后,在回调的线程函数中,像下面这样重新让这个SOCKET进入监听状态,等待下一个用户连接进来,至此组建SOCKET池的目的就真正达到了:

//创建一个自定义的OVERLAPPED扩展结构,使用IOCP方式调用

pMyOL= new MYOVERLAPPED;

pMyOL->m_iOpType = 0;        //AcceptEx操作

pMyOL->m_skServer = skServer;

pMyOL->m_skClient = skClient;

BYTE* pBuf = new BYTE[256];//一个缓冲

ZeroMemory(pBuf,256*sizeof(BYTE));

pMyOL->m_pBuf = pBuf;

AcceptEx(skServer, skClient,pBuf , 0,256,256,NULL,

    (LPOVERLAPPED)pMyOL);

//注意在这个SOCKET被重新利用后,后面的再次捆绑到完成端口的操作会返回一个已设置//的错误,这个错误直接被忽略即可

         ::BindIoCompletionCallback((HANDLE)skClient,Server_IOCPThread, 0);

       至此服务端的线程池就算搭建完成了,这个SOCKET池也就是围绕AcceptEx和DisconnectEx展开的,而创建操作就全部都在服务启动的瞬间完成,一次性投递一定数量的SOCKET进入SOCKET池即可,这个数量也就是通常所说的最大并发连接数,你喜欢多少就设置多少吧,如果连接多数量就大些,如果IO操作多,连接断开请求不多就少点,剩下就是调试了。

 

六、客户端调用:

 

1、  主要是围绕利用ConnectEx开始调用:

SOCKET skConnect = ::WSASocket(AF_INET,SOCK_STREAM,IPPROTO_IP,

                            NULL,0,WSA_FLAG_OVERLAPPED);

//把SOCKET扔进IOCP

BindIoCompletionCallback((HANDLE)skConnect,MyIOCPThread,0);

//本地随便绑个端口

SOCKADDR_IN LocalIP = {};

LocalIP.sin_family = AF_INET;

LocalIP.sin_addr.s_addr = INADDR_ANY;

LocalIP.sin_port = htons( (short)0 );    //使用0让系统自动分配

int result =::bind(skConnect,(LPSOCKADDR)&LocalIP,sizeof(SOCKADDR_IN));

pMyOL= new MYOVERLAPPED;

pMyOL->m_iOpType = 2;            //ConnectEx操作

pMyOL->m_skServer = NULL;    //没有服务端的SOCKET

pMyOL->m_skClient = skConnect;

ConnectEx(skConnect,(const sockaddr*)pRemoteAddr,sizeof(SOCKADDR_IN),

       NULL,0,NULL,(LPOVERLAPPED)pOL) )

如果高兴就可以把上面的过程放到循环里面去,pRemoteAddr就是远程服务器的IP和端口,你可以重复连接n多个,然后疯狂下载东西(别说我告诉你的哈,人家的服务器宕机了找你负责)。注意那个绑定一定要有,不然调用会失败的。

2、  接下来就在线程函数中判定是ConnectEx操作,通过判定m_iOpType == 2就可以知道,然后这样做:

setsockopt( pOL->m_skClient, SOL_SOCKET, SO_UPDATE_CONNECT_CONTEXT,

                     NULL, 0 );

然后就是自由的按照需要调用WSASend或者WSARecv。

3、  最后使用和服务端相似的逻辑调用DisconnectEx函数,收回SOCKET并直接再次调用ConnectEx连接到另一服务器或相同的同一服务器即可。

至此客户端的SOCKET池也搭建完成了,创建SOCKET的工作也是在一开始的一次性就完成了,后面都是利用ConnectEx和DisconnectEx函数不断的连接-收发数据-回收-再连接来进行的。客户端的这个SOCKET池可以用于HTTP下载文件的客户端或者FTP下载的服务端(反向服务端)或者客户端,甚至可以用作一个网游的机器人系统,也可以作为一个压力测试的客户端核心的模型。

 

七、总结和提高:

以上就是比较完整的如何具体实现SOCKET池的全部内容,因为篇幅的原因就不贴全部的代码了,我相信各位看客看完之后心中应该有个大概的框架,并且也可以进行实际的代码编写工作了。可以用纯c来实现也可以用C++来实现。但是这里要说明一点就是DisconnectEx函数和ConnectEx函数似乎只能在XP SP2以上和2003Server以上的平台上使用,对于服务端来说这不是什么问题,但是对于客户端来说,使用SOCKET池时还要考虑一个兼容性问题,不得已还是要放弃在客户端使用SOCKET池。

SOCKET池的全部精髓就在于提前创建一批SOCKET,然后就是不断的重复回收再利用,比起传统的非SOCKET池方式,节省了大量的不断创建和销毁SOCKET对象的内核操作,同时借用IOCP函数AcceptEx、ConnectEx和DisconnectEx等的异步IO完成特性提升了整体性能,非常适合用于一些需要大规模TCP连接管理的场景,如:HTTP Server FTP Server和游戏服务器等。

SOCKET池的本质就是充分的利用了IOCP模型的几乎所有优势,因此要用好SOCKET池就要深入的理解IOCP模型,这是前提。有问题请跟帖讨论。

(本文原创,转载请注明出处。http://gamebabyrocksun.blog.163.com/blog/static/57153463201021554716831/)



本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
完成端口详解
IOCP服务器设计(via Modern C++)
利用HOOKAPI拦截文件操作
Overlapped I/O模型深入分析
邮槽
Windows CE文件操作
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服