打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
场效应管
场效应管基础知识
一、场效应管的分类
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。
上图中画出了三种N型场管,第一种叫结型场管.工作条件是VD大于VS大于VG.        VGS电压一定要是负的,在一定规围内电压越近0时,电流ID就越大,可以看下图的特性曲线.
第二种绝缘栅增强型,工作条件是VD大于VS大于VG        VGS电压一定要是正的,在一定规围内电压越大,电流ID也不越大.可以看下图的特性曲线.他有个开启电压,当VGS的电压没有达到开启电压时,管子是不通的.
第三种是绝缘栅耗尽型,VD大于VS,   VGS电压可正可负,下图的特性曲线.可以看出,当VGS电压从负到正时,电流ID也加大.
P型场与N型工作条件相反.
二、场效应三极管的型号命名方法
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。
三、场效应管的参数
1、I DSS — 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。
2、UP — 夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
3、UT — 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、gM — 跨导。是表示栅源电压U GS — 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。
5、BUDS — 漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。
6、PDSM — 最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。
7、IDSM — 最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM
几种常用的场效应三极管的主要参数
四、场效应管的作用
2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。
3、场效应管可以用作可变电阻。
4、场效应管可以方便地用作恒流源。
5、场效应管可以用作电子开关。
五、场效应管的测试
1、结型场效应管的管脚识别:
场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将 万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S (可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。
2、判定栅极
用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。
制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。源极与漏极间的电阻约为几千欧。
注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。
3、估测场效应管的放大能力
将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。这时表针指示出的是D-S极间电阻值。然后用手 指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有 较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。
由于人体感应的50Hz交流电压较 高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数 管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。
本方法也适用于测MOS管。为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。
MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。
场效应管的检测与测量1
场效应管的检测:
由于场效应管的结构、原理和普通三极管不同,在业余条件下用万用表作判别的方法亦不相同,在测试前将双手摸触一下自来水管或地线,以放掉身体的电荷。
1.G极(栅极)的判定:万用表用R×100档,分别测量场效应管每两脚间的阻值(正反向各测一次),应有一对脚阻值为数百欧姆(如均为大阻值,则用两表笔卡住两只脚,黑笔再点另一脚,如仍为高阻值,再将红笔点另一脚,总有一次出现有两脚低阻值的情况,如没有这种情况,管子应属已损坏)这时万用表两表笔所接的引脚是D极(漏极)和S极(源极),对其它脚均为阻值大的是G极(栅极)。
2.D极(漏极)、S极(源极)的判定:万用表置于R×10档,将红、黑表笔卡住要判断的D、S极上,分别测量两极间的正反向电阻值,在测得阻值为较大值时,用黑表笔与G极(栅极)接触一下,然后再恢复原状,在此过程中,红、黑笔应始终与原管脚相触,这时万用表的读数会出现两种情况:若读数由大变小,则万用表黑笔所接的管脚为D极(漏极),红表笔所接的管脚为S极(源极);若万用表读数没有明显变化,仍为较大值,这时就应把黑表笔与引脚保持接触,然后移动红表笔与G极(栅极)触碰一下。此时若阻值由大变小,则黑表笔所接的管脚为S极(源极),红表笔所接的管脚为D极(漏极)。
3.类型的判定:确定D极(漏极)和S极(源极)后,如果万用表黑表笔所接为D极(漏极),红表笔所接为S极S极(源极),而且用黑表笔触发G(栅极)极,这时表明该场效应管为N沟道;如果黑表笔所接为S极(源极),红表笔所接为D极(漏极),且需用红表笔才能触发G极(栅极),则表明该场效应管为P沟道。
4.跨导大小的判别:对于N沟道的场效应管,用红表笔接S极(源极)黑表笔接D极(漏极),万用表读数应较大,这时若用100K电阻一端先按D极(漏极),再碰G极(栅极),万用表读数就会发生变化,变化越明显,说明该场效应管的跨导越大。
对于D沟道的场效应管,用黑表笔接S极(源极),红表笔接D极(漏极),方法同前。
有的人用手触碰G极(栅极)的方法来试亦可,但易造成击穿故障。
有些大功率管,S极(源极)与D极(漏极)反向并有一只二极管,测试时应考虑这一情况。
场效应管-晶体管的组合管,也可按这一方法测试.
2
五、 场效应管的测量及好坏判断
1、测量
极性及管型判断
红笔接S、黑笔接D值为(300-800)为N沟道
红笔接D、黑笔接S值为(300-800)为p沟道
如果先没G、D再没S、D会长响,表笔放在G和最短脚相连放电,如果再长响为击穿
贴片场管与三极管难以区分,先按三极管没,如果不是按场管测
场管测量时,最好取下来测,在主板上测量会不准
2、好坏判断
测D、S两脚值为(300-800)为正常,如果显示“0”且长响,场管击穿;如果显示“1”,场管为开路
软击穿(测量是好的,换到主板上是坏的),场管输出不受G极控制。
六、 场管的代换原则(只适合主板)
场管代换只需大小相同,分清N沟道P沟道即可
功率大的可以代换功率小的
技嘉主板的场管最好原值代换
七、 主板上常见的场管型号
N沟道:
702、712、G16、SG、SS、7EW、12KSH、72KGG、KF
中等大小的场管:3055、09N05、40N03、45N03
外型较大的场管:L3103S、K3296、K3289、6030、7030
55N03、76139D、76129S、10N03、15M03
F827、F841、BPS100
P沟道:
352A、356
场管的参数等
Cds---漏-源电容
Cdu---漏-衬底电容
Cgd---栅-源电容
Cgs---漏-源电容
Ciss---栅短路共源输入电容
Coss---栅短路共源输出电容
Crss---栅短路共源反向传输电容
D---占空比(占空系数,外电路参数)
di/dt---电流上升率(外电路参数)
dv/dt---电压上升率(外电路参数)
ID---漏极电流(直流)
IDM---漏极脉冲电流
ID(on)---通态漏极电流
IDQ---静态漏极电流(射频功率管)
IDS---漏源电流
IDSM---最大漏源电流
IDSS---栅-源短路时,漏极电流
IDS(sat)---沟道饱和电流(漏源饱和电流)
IG---栅极电流(直流)
IGF---正向栅电流
IGR---反向栅电流
IGDO---源极开路时,截止栅电流
IGSO---漏极开路时,截止栅电流
IGM---栅极脉冲电流
IGP---栅极峰值电流
IF---二极管正向电流
IGSS---漏极短路时截止栅电?
IDSS1---对管第一管漏源饱和电流
IDSS2---对管第二管漏源饱和电流
Iu---衬底电流
Ipr---电流脉冲峰值(外电路参数)
gfs---正向跨导
Gp---功率增益
Gps---共源极中和高频功率增益
GpG---共栅极中和高频功率增益
GPD---共漏极中和高频功率增益
ggd---栅漏电导
gds---漏源电导
K---失调电压温度系数
Ku---传输系数
L---负载电感(外电路参数)
LD---漏极电感
Ls---源极电感
rDS---漏源电阻
rDS(on)---漏源通态电阻
rDS(of)---漏源断态电阻
rGD---栅漏电阻
rGS---栅源电阻
Rg---栅极外接电阻(外电路参数)
RL---负载电阻(外电路参数)
R(th)jc---结壳热阻
R(th)ja---结环热阻
PD---漏极耗散功率
PDM---漏极最大允许耗散功率
PIN--输入功率
POUT---输出功率
PPK---脉冲功率峰值(外电路参数)
to(on)---开通延迟时间
td(off)---关断延迟时间
ti---上升时间
ton---开通时间
toff---关断时间
tf---下降时间
trr---反向恢复时间
Tj---结温
Tjm---最大允许结温
Ta---环境温度
Tc---管壳温度
Tstg---贮成温度
VDS---漏源电压(直流)
VGS---栅源电压(直流)
VGSF--正向栅源电压(直流)
VGSR---反向栅源电压(直流)
VDD---漏极(直流)电源电压(外电路参数)
VGG---栅极(直流)电源电压(外电路参数)
Vss---源极(直流)电源电压(外电路参数)
VGS(th)---开启电压或阀电压
V(BR)DSS---漏源击穿电压
V(BR)GSS---漏源短路时栅源击穿电压
VDS(on)---漏源通态电压
VDS(sat)---漏源饱和电压
VGD---栅漏电压(直流)
Vsu---源衬底电压(直流)
VDu---漏衬底电压(直流)
VGu---栅衬底电压(直流)
Zo---驱动源内阻
η---漏极效率(射频功率管)
Vn---噪声电压
aID---漏极电流温度系数
ards---漏源电阻温度系数
1.4.1 结型场效应管工作原理
结型场效应管分类:N沟道和P沟道两种。如下图所示为N沟道管的结构和符号。
如右图所示为N沟道结型场效应管的结构示意图。
一、结型场效应管的工作原理
N沟道结型场效应管正常工作时,在漏-源之间加正向电压 
,形成漏极电流 
。 
<0,耗尽层承受反向电压,既保证栅-源之间内阻很高,又实现 
对沟道电流的控制。
其工作原理:
★ 
 =0时, 
 对导电沟道的控制作用,如下图所示。
=0时, 
=0,耗尽层很窄,导电沟道很宽,如图(a)所示。
增大时,耗尽层加宽,沟道变窄,沟道电阻增大,如图(b)所示。
增大到某一数值时,耗尽层闭合,沟道消失,如图(c)所示,沟道电阻趋于无穷大,称此时 
的值为夹断电压 
★ 
 为 
 ~0中某一固定值时, 
 对漏极电流 
 的影响
 =0,由 
 所确定的一定宽的导电沟道,但由于d-s间电压为零,多子不会产生定向移动, 
 =0。
 >0,有电流 
 从漏极流向源极,从而使沟道各点与栅极间的电压不再相等,沿沟道从源极到漏极逐渐增大,造成靠近漏极一边的耗尽层比靠近源极一边的宽。如下图(a)所示。
从零逐渐增大时, 
逐渐减小,靠近漏极一边的导电沟道随之变窄。电流 
随 
线性增大。
增大,使 
,漏极一边耗尽层出现夹断区,如图(b)所示,称 
为预夹断。
 继续增大, 
 < 
 ,夹断区加长,如图(c)所示。这时,一方面自由电子从漏极向源极定向移动所受阻力加大,从而导致 
 减小;另一方面,随着 
 的增大,使d-s间的纵向电场增强,导致 
 增大。两种变化趋势相抵消, 
 表现出恒流特性。
二、结型场效应管的特性曲线
★输出特性曲线
输出特性表示在栅源电压一定的情况下,漏极电流 
 与漏源电压 
 之间的关系,即
曲线如下图所示。
输出特性可以分为四个工作区:
◆可变电阻区:曲线拐弯点的连线与纵轴所夹区域。 
 较小,导电沟道畅通,d-s之间相当于一个欧姆电阻,当 
不变, 
 从零增大, 
 线性增大。 
 越大,曲线越陡,沟道电阻随 
 大小而变,故称为可变电阻区,在这个区域场效应管是导通的,类似于晶体三极管的饱和区。
◆夹断区:靠近横轴 
 < 
 区域.此时电流 
 =0,场效应管呈现一个很大的电阻,这个区域类似晶体三极管的截止区。
◆恒流区:恒流区指中间平坦区域,它属于线性放大区, 
增大到脱离可变电阻区, 
不随 
的增大而变化, 
趋向恒定值。在这个区域, 
只随 
的增大而增大。在该区域工作的场效应管, 
的大小只受 
的控制,表现出场效应管电压控制电流的放大作用。
◆击穿区: 
 增大, 
 突然加大,反向偏置的PN结超过承受极限而发生沟道击穿, 
 和 
 失去对 
 的控制作用,若不加限制,场效应管会损坏。使用时一定要特别注意, 
 不可过大。
★转移特性
由于结型管外加的是反偏电压,没有栅极电流,所以没有输入特性。漏极电流 
与栅源电压 
的关系曲线称为转移特性。即
 = 
常数
N沟道结型管 
对 
的控制规律如右图所示。
当 
 为确定值, 
 由零向负方向变化, 
 将减小, 
 = 
 ,使 
 =0,此电压便是夹断电压。当 
 =0时,漏极电流最大,称为饱和漏电流,用IDSS表示。实验证明,在 
 < 
 £ 0 的范围内,漏极电流与栅极电压的关系近似为:
说明场效应管为非线性器件。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
场效应管工作原理
导体场效应晶体管基础知识解析
万用表定性判断场效应管的好坏
mos管 场效应管
MOS场效应管的检测及逆变器场效应管的应用
结型场效应管的测量
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服