打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
PPC指令集[转]
PPC指令集[转]
存储 bi microsoft 汇编 linux gcc
目录
存储/加载指令
1 整数存储指令
整数存储指令如表2所示。
表2 整数存储指令
名称
助记符
语法格式
字节存储(偏移地址寻址)
stb
rS, d(rA)
字节存储(寄存器寻址)
stbx
rS, rA, rB
记录有效地址的字节存储(偏移地址寻址)
stbu
rS, d(rA)
记录有效地址的字节存储(寄存器寻址)
stbux
rS, rA, rB
半字存储(偏移地址寻址)
sth
rS, d(rA)
半字存储(寄存器寻址)
sthx
rS, rA, rB
记录有效地址的半字存储(偏移地址寻址)
sthu
rS, d(rA)
记录有效地址的半字存储(寄存器寻址)
sthux
rS, rA, rB
字存储(偏移地址寻址)
stw
rS, d(rA)
字存储(寄存器寻址)
stwx
rS, rA, rB
记录有效地址的字存储(偏移地址寻址)
stwu
rS, d(rA)
记录有效地址的字存储(寄存器寻址)
stwux
rS, rA, rB
st(ore) ** 的指令都是将寄存器中值存储到存储器(内存等)
(1)    字节存储指令stb(偏移地址寻址)
stb rS,d(rA)
有效地址(EffectAddr)为rA的内容加d,rS的低8位内容存储到有效地址为EA的存储器中。
(2)    字节存储指令stbx(寄存器寻址)
stbx rS,rA,rB
有效地址为rA的内容加上rB的内容,rS的低8位内容存储到有效地址为EA的存储器中。
(3)    记录有效地址的字节存储指令stbu(偏移地址寻址)
stub rS,d(rA)
有效地址EA=(rA)+d,rS的低8位内容存储到有效地址为EA的存储器中。rA=EA,如果rA=0,则指令无效。
(4)    记录有效地址的字节存储指令stbux(寄存器寻址)
stbux rS,rA,rB
有效地址EA=(rA)+(rB),rS的低8位内容存储到有效地址为EA的存储器中,rA=EA,如果rA=0,则指令无效。
(5)    半字存储指令sth(偏移地址寻址)
sth rS,d(rA)
有效地址EA=(rA)+d,rS的低16位内容存储到有效地址为EA的存储器中。
(6)    记录有效地址的半字存储指令sthu(偏移地址寻址)
sthu rS,d(rA)
有效地址EA=(rA)+d,rS的低16位内容存储到有效地址为EA的存储器中。rA=EA,如果rA=0,则指令无效。
(7)    字存储指令stw(偏移地址寻址)
stw rS,d(rA)
有效地址EA=(rA)+d,rS的32位内容存储到有效地址为EA的存储器中。
(8)    记录有效地址的字存储指令stwu(偏移地址寻址)
stwu rS,d(rA)
有效地址EA=(rA)+d,rS的32位内容存储到有效地址为EA的存储器中,rA=EA,如果rA=0,则指令无效。
(9)    记录有效地址的字存储指令stwux(寄存器寻址)
stwux rS,rA,rB
有效地址EA=(rA)+(rB),rS的32位内容存储到有效地址为EA的存储器中。rA=EA,如果rA=0,则指令无效。
(10)字存储指令stwx(寄存器寻址)
stwx rS,rA,rB
有效地址EA=(rA)+(rB),rS的32位内容存储到有效地址为EA的存储器中。
2、整数加载指令
整数加载指令如表3所示。
名称
助记符
语法格式
高位清零加载字节指令(偏移地址寻址)
lbz
rD, d(rA)
高位清零的加载字节指令(寄存器寻址)
lbzx
rD, rA, rB
高位清零的加载字节并记录有效地址指令(偏移地址寻址)
lbzu
rD, d(rA)
高位清零的加载字节并记录有效地址指令(寄存器寻址)
lbzux
rD, rA, rB
高位清零的加载半字指令(偏移地址寻址)
lhz
rD, d(rA)
高位清零的加载半字指令(寄存器寻址)
lhzx
rD, rA, rB
高位清零的加载半字并记录有效地址指令(偏移地址寻址)
lhzu
rD, d(rA)
高位清零的加载半字并记录有效地址指令(寄存器寻址)
lhzux
rD, rA, rB
加载半字指令(偏移地址寻址)
lha
rD, d(rA)
加载半字指令(寄存器寻址)
lhax
rD, rA, rB
加载半字并记录有效地址指令(偏移地址寻址)
lhau
rD, d(rA)
加载半字并记录有效地址指令(寄存器寻址)
lhaux
rD, rA, rB
加载字指令(偏移地址寻址)
lwz
rD, d(rA)
加载字指令(寄存器寻址)
lwzx
rD, rA, rB
加载字并记录有效地址指令(偏移地址寻址)
lwzu
rD, d(rA)
加载字并记录有效地址指令(寄存器寻址)
lwzux
rD, rA, rB
l(oad)** 指令从存储器(内存等)取数据加载到寄存器
(1)    lbz rD, d(rA) ;EA=(rA|0)+d。从存储器读取EA地址的内容,并加载低8位到rD,rD的其他位清0。不影响其他寄存器。
(2)    lbzu rD, d(rA) ;EA=(rA)+d。从存储器读取EA地址一个字节的内容,并加载低8位到rD,rD的其他各位清零,有效地址EA存放在rA中。
(3)    lbzux rD,rA,rB ;EA=(rA)+(rB)。从存储器读取EA地址一个字节的内容,并加载低8位到rD,rD的其他各位清零,EA存放在rA中。如果rA=0或者rA=rD,则指令无效。
(4)    lbzx rD,rA,rB   ;EA=(rA|0)+(rB)。从存储器读取EA地址一个字节的内容,并加载低8位到rD,rD的其他各位清0。
(5)    lha rD, d(rA) ;EA=(rA|0)+d。从存储器EA处读取两个字节的数,并加载到rD的低16位。rD的其他位填充最高位的值。
(6)    lhax rD,rA,rB ;EA=(rA)+(rB)。从存储器EA处读取两个字节的数,并加载到rD的低16位。rD的其他位填充最高位的值。
(7)    lhau rD, d(rA) ;EA=(rA)+d。从存储器EA处读取两个字节的数,并加载到rD的低16位。rD的其他位填充最高位的值。EA存放在rA中,如果rA=0或者rA=rD,则指令格式无效。
(8)    lhaux rD,rA,rB ;EA=(rA)+(rB)。从存储器EA处读取两个字节的数,并加载到rD的低16位。rD的其他位填充最高位的值。EA存放在rA中,如果rA=0或者rA=rD,则指令格式无效。
(9)    lhz rD, d(rA) ;EA=(rA|0)+d。从存储器EA处读取两个字节的数,并加载到rD的低16位。rD的其他位清零。
(10)lhzu rD, d(rA) ;EA=(rA|0)+d。从存储器EA处读取两个字节的数,并加载到rD的低16位。rD其他位清零。EA存入rA,如果rA=0或者rA=rD,则指令格式无效。
(11)lhzux rD,rA,rB ;EA=(rA)+(rB)。从存储器EA处读取两个字节的数,加载到rD的低16位,rD其他位清零。EA存入rA,如果rA=0或者rA=rD,则指令格式无效。
(12)lhzx rD,rA,rB ;EA=(rA|0)+(rB),从EA处读取两个字节的数,并加载到rD的低16位,将rD的其他位清零。
(13)lwz rD,d(rA);EA=(rA|0)+d,从EA处读取4个字节的数,并加载到rD。
(14)lwzu rD,d(rA);EA=(rA)+d,从EA处读取4个字节的数,并加载到rD。rA=EA,如果rA=0或rA=rD,则指令格式无效。
(15)lwzux rD,rA,rB ;EA=(rA)+(rB),从EA处读取4个字节的数,并加载到rD。rA=EA,如果rA=0或rA=rD,则指令格式无效。
(16)lwzx rD,rA,rB ;EA=(rA|0)+(rB),从EA处读取4个字节的数,并加载到rD。
整数多字存储/加载指令
表3 整数多字存储/加载指令
名称
助记符
语法格式
多字加载
lmw
rD,d(rA)
多字存储
stmw
rS,d(rA)
(1)    lmw rD,d(rA) ;EA=rA+d。以EA起始的n个连续的字加载到通用寄存器GPRs rD到r31处,n=32-rD。EA必须为4的倍数,如果rA=0,则指令格式无效。指令执行时间长。
(2)    stmw rS,d(rA) ;EA=rA+d。把通用寄存器从GPRs rS到GPRs r31,存储到以EA起始的n个连续的字存储器,EA必须是4的倍数。指令执行时间长。
转移指令
表4 分支控制指令
名称
助记符
语法格式
无条件转移
b( ba bl bla)
target_addr
条件转移
bc( bca bcl bcla)
BO,BI,target_addr
条件转移(转移目标地址由LR指出)
bclr(bclrl)
BO,BI
条件转移(转移目标地址由CTR指出)
bcctr(bcctrl)
BO,BI
(1)    无条件转移指令bx(b ba bl bla)
指令的编码格式:
指令的语法格式:
b target_addr(AA=0 LK=0)
ba target_addr(AA=1 LK=0)
bl target_addr(AA=0 LK=1)
bla target_addr(AA=1 LK=1)
如果AA=0,则转移目标地址为LI||0b00的值经符号位扩展后加上指令地址。
如果AA=1,则转移目标地址为LI||0b00的值经符号扩展后的值。
如果LK=1,则转移指令下一条指令的有效地址存放到连接寄存器。
(1)    条件转移指令bcx
指令编码格式:
指令语法格式:
bc BO, BI, target_addr(AA=0 LK=0)
bca BO, BI, target_addr(AA=1 LK=0)
bcl BO, BI, target_addr(AA=0 LK=1)
bcla BO, BI, target_addr(AA=1 LK=1)
BI字段表示条件寄存器CR中的位用于转移条件。BO字段操作码定义见表5。
表5 BO字段操作码定义
BO
说明
0000y
计数器CTR减量,如果条件不成立则转移
0001y
计数器CTR减量,如果条件不成立则转移
001zy
如果条件不成立,则转移
0100y
计数器CTR减量,如果条件成立则转移
0101y
计数器CTR减量,如果条件成立则转移
011zy
如果条件成立则转移
1z00y
计数器CTR减量,如果CTR!=0,则发生转移
1z01y
计数器CTR减量,如果CTR=0,则发生转移
1z1zz
发生转移
注:位z表示该位可以被忽略,位y表示是不是条件转移
(2)    条件转移指令bclx(转移目标地址由LR指出)
指令的编码格式:
指令的语法格式:
bclr BO, BI(LK=0)
bclrl BO, BI(LK=1)
BI字段表示条件寄存器CR中的位用于转移条件。
BO字段操作码定义如表5所示。
转移目标地址为LR[0-29]||0b00。
如果LK=1,则转移指令下一条有效地址存放到连接寄存器。
(3)    条件转移指令bcctrx(转移目标地址由CTR指出)
指令的编码格式:
指令的语法格式:
bcctr BO, BI(LK=0)
bcctrl BO, BI(LK=1)
转移目标地址是CTR||0b00。
如果LK=1,则转移指令下一条指令的有效地址存放到连接寄存器。
如果减量计数器(BO[2]=0),指令格式无效,则转移到目标地址。
特殊寄存器传送指令
特殊寄存器传送指令如表6所示。
表6 特殊寄存器传送指令
名称
助记符
语法格式
读取机器状态寄存器
mfmsr
rD
写入机器状态寄存器
mtmsr
rS
读取特殊功能寄存器
mfspr
rD, SPR
写入特殊功能寄存器
mtspr
SPR, rS
读取段寄存器
mfsr
rD, SR
写入段寄存器
mtsr
SR, rS
间接读取段寄存器
mfsrin
rD, rB
间接写入段寄存器
mtsrin
rS, rB
读取时基寄存器
mftb
rD, TBR
(1)    读取机器状态寄存器指令mfmsr
指令的编码格式:
指令的语法格式:
mfmsr rD
读取MSR的内容放入rD中,这是超级用户层指令,不影响其他寄存器。
(2)写入机器状态寄存器指令mtmsr
指令的编码格式:
指令的语法格式:
mtmsr rS
把rS的内容存入MSR中,这是超级用户指令。
(1)    读取特殊功能寄存器指令mfspr
指令的编码格式:
指令的语法格式:
mfspr rD,SPR
指令操作:
n<—spr[5-9]||spr[0-4]
rD<—spr(n)
特殊功能寄存器(SPR)的编码如表7所示,将SPR的内容存入rD中。
表7 Power PC UISA SPR编码
spr
寄存器名
编码n
spr[5-9]
spr[0-4]
1
00000
00001
XER
8
00000
01000
LR
9
00000
01001
CR
(2)    写入特殊功能寄存器指令mtspr
指令的编码格式:
指令的语法格式:
mtspr spr,rS
把rS的内容存入到指定的特殊功能寄存器中。
(3)    读取段寄存器指令mfsr
指令的编码格式:
指令的语法格式:
mfsr rD,SR
指令操作:
rD<—SEGREG(SR)
将段寄存器SR的内容读入rD中,这是一个超级用户层指令。
(1)    写入段寄存器指令mtsr
指令的编码格式:
指令的语法格式:
mtsr SR,rS
将rS中的内容读入SR,这是一个超级用户层指令。
(2)    间接读取段寄存器指令mfsrin
指令的编码格式:
指令的语法格式:
mfsrin rD,rB
指令操作:
rD<—SEGREG(rB[0-3])
由rB寄存器的0~3位选取的段寄存器的内容,复制到rDzhong。这是一个超级用户层指令。
(3)    间接写入段寄存器指令mtsrin
指令的编码格式:
指令的语法格式:
mtsrin rS,rB
指令操作:
SEGREG(rB[0-3])<—(rS)
将rS中的内容复制到由rB的0~3位所指定的寄存器中。这是一个超级用户层指令。
(4)    读取时基寄存器指令mftb
指令的编码格式:
指令的语法格式:
mftb rD,TBR
指令操作:
n<—tbr[5-9]||tbr[0-4]
if n=268 then
rD<—TBL
else if n=269 then
rD<—TBU
该指令的TBR编码如表8所示。
表8 指令mftb的TBR编码
TBR
寄存器名
访问
编码
tbr[5-9]
tbr[0-4]
268
01000
01100
TBL
用户
269
01000
01101
TBR
用户
系统调用指令
(1)    系统调用指令sc
指令的编码格式:
指令的使用:
sc指令调用操作系统去执行服务程序。当控制返回到一个执行系统调用的程序时,寄存器的内容依赖于程序提供的系统所使用的寄存器的约定。
跟在sc指令后面的有效指令地址被放在SRR0中。MSR中的位0、5~9和16~31被放在SRR1中对应的位置,SRR1中位1~4和10~15被设置为未定义值。当sc异常产生,异常处理程序更改MSR寄存器。异常处理程序到MSR[IP]形成基址加0xC00偏移量形成的地址去取下一条指令。
受影响的寄存器有:
依赖于系统服务、SRR0、SRR1及MSR。
(2)    中断返回指令rfi
指令的编码格式:
指令操作:
MSR[16-23,25-27,30-31] <—SRR1[16-23,25-27,30-31]
NIA<—iea SRR0[0-29]||0b00
SRR1中的位0、5~9和16~31被放在MSR中对应的位置。如果新的MSR值没有使能任何未完的操作,则在MSR的控制下,从地址SRR0[0-29]||0b00取下一条指令。
指令的使用中受影响的寄存器为MSR。
PowerPC汇编基础篇
PowerPC正用于和曾经用于 IBM服务器, 苹果电脑,任天堂Gamecube游戏机
Gekko 芯片用在了任天堂的 GameCube 中,Xenon 则用在了 Microsoft 的 Xbox360中。Cell Broadband Engine 是近来崭露头角的一种体系结构,使用 PowerPC 指令,并且具有八个向量处理器。Sony PlayStation 3 将使用 Cell,考虑到 PlayStation 3 将用于广泛的多媒体应用程序,因此还使用为数众多的其他向量。
PowerPC 指令集比 POWER 处理器系列更加有用。指令集本身可以 64 位模式操作,也可以简化的 32 位模式操作。POWER5 处理器支持这两种模式,POWER5 上的 Linux 发布版支持为 32 位和 64 位 PowerPC 指令集而编译的应用程序。
应用程序二进制接口(ABI)
PPC32 Linux和NetBSD使用 SVR4 ABI
PPC64 Linux和AIX   使用 PowerOpen ABi
SVR4 ABI
1)传参数从 GPR3 开始
2)GPR3-GPR12 是容易失去的寄存器。如果需要,在调用子例程之前,必须先保存并在返回后恢复.
PowerPC 寄存器有编号,而没有名称。对于初学者来说,有时这会使人混淆,因为 tts 无法轻易地与寄存器区分开。3可以表示数值3或者寄存器 gpr3 ,或者浮点 fpr3 ,或者特殊用途的寄存器 spr3 。习惯了就好了。:)
但是,在GDB的反汇编中, 寄存器是用 r3 表示的
通用寄存器
r0 跟stack frame有关系, 当建立stack frame时,用来保存旧的LR
r1 stack pointer
r2 toc(table of content)指针
r3 第一个参数, 返回值也放在这个寄存器
r11 常用做指针
专用寄存器
lr   链接寄存器,它用来存放函数调用结束处的返回地址。
ctr   计数寄存器,它用来当作循环计数器,会随特定转移操作而递减。
xer   定点异常寄存器,存放整数运算操作的进位以及溢出信息。
msr   机器状态寄存器,用来配置微处理器的设定。
cr   条件寄存器,它分成8个4位字段,cr0-cr7,它反映了某个算法操作的结果并且提供条件分支的机制。
常用指令
li REG, VALUE
加载寄存器 REG,数字为 VALUE
add REGA, REGB, REGC
将 REGB 与 REGC 相加,并将结果存储在 REGA 中
addi REGA, REGB, VALUE
将数字 VALUE 与 REGB 相加,并将结果存储在 REGA 中
mr REGA, REGB
将 REGB 中的值复制到 REGA 中
or REGA, REGB, REGC
对 REGB 和 REGC 执行逻辑 “或” 运算,并将结果存储在 REGA 中
ori REGA, REGB, VALUE
对 REGB 和 VALUE 执行逻辑 “或” 运算,并将结果存储在 REGA 中
and, andi, xor, xori, nand, nand, and nor
其他所有此类逻辑运算都遵循与 “or” 或 “ori” 相同的模式
ld REGA, 0(REGB)
使用 REGB 的内容作为要载入 REGA 的值的内存地址
lbz, lhz, and lwz
它们均采用相同的格式,但分别操作字节、半字和字(“z” 表示它们还会清除该寄存器中的其他内容)
b ADDRESS
跳转(或转移)到地址 ADDRESS 处的指令
bl ADDRESS
对地址 ADDRESS 的子例程调用
cmpd REGA, REGB
比较 REGA 和 REGB 的内容,并恰当地设置状态寄存器的各位
beq ADDRESS
若之前比较过的寄存器内容等同,则跳转到 ADDRESS
bne, blt, bgt, ble, and bge
它们均采用相同的形式,但分别检查不等、小于、大于、小于等于和大于等于
std REGA, 0(REGB)
使用 REGB 的地址作为保存 REGA 的值的内存地址
stb, sth, and stw
它们均采用相同的格式,但分别操作字节、半字和字
sc
对内核进行系统调用
所有计算值的指令均以第一个操作数作为目标寄存器。在所有这些指令中,寄存器都仅用数字指定。例如,将数字 12 载入寄存器 5 的指令是 li 5, 12。我们知道,5 表示一个寄存器,12 表示数字 12,原因在于指令格式(因为li第一个操作数就是寄存器,第2个是立即数)。
在某些指令中,GPR0 只是代表数值 0,而不会去查找 GPR0 的内容。
一个最简单的例子
.globl .main .main: li 3, 5 blr
保存为 simple.s
用gcc来汇编连接
$gcc simple.s -o simple
$./simple
$ echo $?
5
说明上次运行的程序,返回值是5
转自http://blog.sina.com.cn/s/blog_43e437d50100ehrv.html
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
PowerPC汇编指令集
ARM指令集学习总结(转载)
arm汇编指令
看懂PowerPC汇编之指令集架构
PowerPC 体系结构
七种寻址方式(立即寻址、寄存器寻址)
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服