打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
品茗论道说广播(Broadcast内部机制讲解)(下)
侯 亮
下面我们来看,递送广播动作中最重要的processNextBroadcast()。
3.2 最重要的processNextBroadcast()
从processNextBroadcast()的代码,我们就可以看清楚前面说的“平行广播”、“有序广播”和“动态receiver”、“静态receiver”之间的关系了。
我们在前文已经说过,所有的静态receiver都是串行处理的,而动态receiver则会按照发广播时指定的方式,进行“并行”或“串行”处理。能够并行处理的广播,其对应的若干receiver一定都已经存在了,不会牵扯到启动新进程的操作,所以可以在一个while循环中,一次性全部deliver。而有序广播,则需要一个一个地处理,其滚动处理的手段是发送事件,也就是说,在一个receiver处理完毕后,会利用广播队列(BroadcastQueue)的mHandler,发送一个BROADCAST_INTENT_MSG事件,从而执行下一次的processNextBroadcast()。
processNextBroadcast()的代码逻辑大体是这样的:先尝试处理BroadcastQueue中的“平行广播”部分。这需要遍历并行列表(mParallelBroadcasts)的每一个BroadcastRecord以及其中的receivers列表。对于平行广播而言,receivers列表中的每个子节点是个BroadcastFilter。我们直接将广播递送出去即可:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
while (mParallelBroadcasts.size() > 0)
{
r = mParallelBroadcasts.remove(0);
r.dispatchTime = SystemClock.uptimeMillis();
r.dispatchClockTime = System.currentTimeMillis();
final int N = r.receivers.size();
. . . . . .
for (int i=0; i<N; i++)
{
Object target = r.receivers.get(i);
. . . . . .
deliverToRegisteredReceiverLocked(r, (BroadcastFilter)target, false);
}
. . . . . .
}
3.2.1 用deliverToRegisteredReceiverLocked()递送到平行动态receiver
deliverToRegisteredReceiverLocked()的代码截选如下:
【frameworks/base/services/java/com/android/server/am/BroadcastQueue.java】
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
private final void deliverToRegisteredReceiverLocked(BroadcastRecord r,
BroadcastFilter filter,
boolean ordered)
{
. . . . . .
. . . . . .
if (!skip)
{
if (ordered)
{
r.receiver = filter.receiverList.receiver.asBinder();
r.curFilter = filter;
filter.receiverList.curBroadcast = r;
r.state = BroadcastRecord.CALL_IN_RECEIVE;
if (filter.receiverList.app != null)
{
r.curApp = filter.receiverList.app;
filter.receiverList.app.curReceiver = r;
mService.updateOomAdjLocked();
}
}
. . . . . .
performReceiveLocked(filter.receiverList.app,
filter.receiverList.receiver,
new Intent(r.intent), r.resultCode,
r.resultData, r.resultExtras,
r.ordered, r.initialSticky);
if (ordered)
{
r.state = BroadcastRecord.CALL_DONE_RECEIVE;
}
. . . . . .
}
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
private static void performReceiveLocked(ProcessRecord app, IIntentReceiver receiver,
Intent intent, int resultCode, String data, Bundle extras,
boolean ordered, boolean sticky) throws RemoteException
{
// Send the intent to the receiver asynchronously using one-way binder calls.
if (app != null && app.thread != null)
{
// If we have an app thread, do the call through that so it is
// correctly ordered with other one-way calls.
app.thread.scheduleRegisteredReceiver(receiver, intent, resultCode,
data, extras, ordered, sticky);
}
else
{
receiver.performReceive(intent, resultCode, data, extras, ordered, sticky);
}
}
终于通过app.thread向用户进程传递语义了。注意scheduleRegisteredReceiver()的receiver参数,它对应的就是前文所说的ReceiverDispatcher的Binder实体——InnerReceiver了。
总之,当语义传递到用户进程的ApplicationThread以后,走到:
?
1
2
3
4
5
6
7
8
9
// This function exists to make sure all receiver dispatching is
// correctly ordered, since these are one-way calls and the binder driver
// applies transaction ordering per object for such calls.
public void scheduleRegisteredReceiver(IIntentReceiver receiver, Intent intent,
int resultCode, String dataStr, Bundle extras, boolean ordered,
boolean sticky) throws RemoteException
{
receiver.performReceive(intent, resultCode, dataStr, extras, ordered, sticky);
}
终于走到ReceiverDispatcher的InnerReceiver了:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
static final class ReceiverDispatcher
{
final static class InnerReceiver extends IIntentReceiver.Stub
{
. . . . . .
. . . . . .
public void performReceive(Intent intent, int resultCode,
String data, Bundle extras,
boolean ordered, boolean sticky)
{
LoadedApk.ReceiverDispatcher rd = mDispatcher.get();
. . . . . .
if (rd != null) {
rd.performReceive(intent, resultCode, data, extras,
ordered, sticky);
}
. . . . . .
}
}
. . . . . .
public void performReceive(Intent intent, int resultCode,
String data, Bundle extras,
boolean ordered, boolean sticky)
{
. . . . . .
Args args = new Args(intent, resultCode, data, extras, ordered, sticky);
if (!mActivityThread.post(args)) // 请注意这一句!
{
if (mRegistered && ordered)
{
IActivityManager mgr = ActivityManagerNative.getDefault();
if (ActivityThread.DEBUG_BROADCAST) Slog.i(ActivityThread.TAG,
"Finishing sync broadcast to " + mReceiver);
args.sendFinished(mgr);
}
}
}
}
请注意mActivityThread.post(args)一句,这样,事件泵最终会回调Args参数的run()成员函数:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
final class Args extends BroadcastReceiver.PendingResult implements Runnable
{
. . . . . .
. . . . . .
public void run()
{
final BroadcastReceiver receiver = mReceiver;
. . . . . .
try {
ClassLoader cl =  mReceiver.getClass().getClassLoader();
intent.setExtrasClassLoader(cl);
setExtrasClassLoader(cl);
receiver.setPendingResult(this);
receiver.onReceive(mContext, intent);  // 回调具体receiver的onReceive()
} catch (Exception e) {
. . . . . .
}
if (receiver.getPendingResult() != null) {
finish();
}
. . . . . .
}
}
其中的那句receiver.onReceive(this),正是回调我们具体receiver的onReceive()成员函数的地方。噢,终于看到应用程序员熟悉的onReceive()了。这部分的示意图如下:
3.2.2 静态receiver的递送
说完动态递送,我们再来看静态递送。对于静态receiver,情况会复杂很多,因为静态receiver所从属的进程有可能还没有运行起来呢。此时BroadcastRecord节点中记录的子列表的节点是ResolveInfo对象。
?
1
2
3
4
ResolveInfo info = (ResolveInfo)nextReceiver;
. . . . . .
r.state = BroadcastRecord.APP_RECEIVE;
String targetProcess = info.activityInfo.processName;
那么我们要先找到receiver所从属的进程的进程名。
processNextBroadcast()中启动进程的代码如下:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
ProcessRecord app = mService.getProcessRecordLocked(targetProcess,
info.activityInfo.applicationInfo.uid);
. . . . . .
if (app != null && app.thread != null)
{
. . . . . .
app.addPackage(info.activityInfo.packageName);
processCurBroadcastLocked(r, app);
return;
. . . . . .
}
r.curApp = mService.startProcessLocked(targetProcess,
info.activityInfo.applicationInfo, true,
r.intent.getFlags() | Intent.FLAG_FROM_BACKGROUND,
"broadcast", r.curComponent,
(r.intent.getFlags()&Intent.FLAG_RECEIVER_BOOT_UPGRADE) != 0,
false)
. . . . . .
mPendingBroadcast = r;
mPendingBroadcastRecvIndex = recIdx;
如果目标进程已经存在了,那么app.thread肯定不为null,直接调用processCurBroadcastLocked()即可,否则就需要启动新进程了。启动的过程是异步的,可能很耗时,所以要把BroadcastRecord节点记入mPendingBroadcast。
3.2.2.1 processCurBroadcastLocked()
我们先说processCurBroadcastLocked()。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
private final void processCurBroadcastLocked(BroadcastRecord r,
ProcessRecord app) throws RemoteException
{
. . . . . .
r.receiver = app.thread.asBinder();
r.curApp = app;
app.curReceiver = r;
. . . . . .
. . . . . .
app.thread.scheduleReceiver(new Intent(r.intent), r.curReceiver,
mService.compatibilityInfoForPackageLocked(r.curReceiver.applicationInfo),
r.resultCode, r.resultData, r.resultExtras, r.ordered);
. . . . . .
started = true;
. . . . . .
}
其中最重要的是调用app.thread.scheduleReceiver()的那句。在IApplicationThread接口中,是这样定义scheduleReceiver()函数原型的:
?
1
2
3
4
5
void scheduleReceiver(Intent intent, ActivityInfo info,
CompatibilityInfo compatInfo,
int resultCode, String data,
Bundle extras, boolean sync)
throws RemoteException;
其中ActivityInfo info参数,记录着目标receiver的信息。可以看到,递送静态receiver时,是不会用到RecevierDispatcher的。
用户进程里handleMessage()
?
1
2
3
4
5
6
case RECEIVER:
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastReceiveComp");
handleReceiver((ReceiverData)msg.obj);
maybeSnapshot();
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
break;
ActivityThread中,会运用反射机制,创建出BroadcastReceiver对象,而后回调该对象的onReceive()成员函数。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
private void handleReceiver(ReceiverData data)
{
. . . . . .
IActivityManager mgr = ActivityManagerNative.getDefault();
BroadcastReceiver receiver;
try {
java.lang.ClassLoader cl = packageInfo.getClassLoader();
data.intent.setExtrasClassLoader(cl);
data.setExtrasClassLoader(cl);
receiver = (BroadcastReceiver)cl.loadClass(component).newInstance();
} catch (Exception e) {
. . . . . .
}
try {
. . . . . .
receiver.setPendingResult(data);
receiver.onReceive(context.getReceiverRestrictedContext(), data.intent);
} catch (Exception e) {
. . . . . .
} finally {
sCurrentBroadcastIntent.set(null);
}
if (receiver.getPendingResult() != null) {
data.finish();
}
}
3.2.2.2 必要时启动新进程
现在我们回过头来看,在目标进程尚未启动的情况下,是如何完成递送的。刚刚我们已经看到调用startProcessLocked()的句子了,只要不出问题,目标进程成功启动后就会调用AMS的attachApplication()。
有关attachApplication()的详情,请参考其他关于AMS的文档,此处我们只需知道它里面又会调用attachApplicationLocked()函数。
?
1
private final boolean attachApplicationLocked(IApplicationThread thread, int pid)
attachApplicationLocked()内有这么几句:
?
1
2
3
4
5
6
7
8
9
// Check if a next-broadcast receiver is in this process...
if (!badApp && isPendingBroadcastProcessLocked(pid)) {
try {
didSomething = sendPendingBroadcastsLocked(app);
} catch (Exception e) {
// If the app died trying to launch the receiver we declare it 'bad'
badApp = true;
}
}
它们的意思是,如果新启动的进程就是刚刚mPendingBroadcast所记录的进程的话,此时AMS就会执行sendPendingBroadcastsLocked(app)一句。
?
1
2
3
4
5
6
7
8
// The app just attached; send any pending broadcasts that it should receive
boolean sendPendingBroadcastsLocked(ProcessRecord app) {
boolean didSomething = false;
for (BroadcastQueue queue : mBroadcastQueues) {
didSomething |= queue.sendPendingBroadcastsLocked(app);
}
return didSomething;
}
BroadcastQueue的sendPendingBroadcastsLocked()函数如下:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public boolean sendPendingBroadcastsLocked(ProcessRecord app) {
boolean didSomething = false;
final BroadcastRecord br = mPendingBroadcast;
if (br != null && br.curApp.pid == app.pid) {
try {
mPendingBroadcast = null;
processCurBroadcastLocked(br, app);
didSomething = true;
} catch (Exception e) {
. . . . . .
}
}
return didSomething;
}
可以看到,既然目标进程已经成功启动了,那么mPendingBroadcast就可以赋值为null了。接着,sendPendingBroadcastsLocked()会调用前文刚刚阐述的processCurBroadcastLocked(),其内再通过app.thread.scheduleReceiver(),将语义发送到用户进程,完成真正的广播递送。这部分在上一小节已有阐述,这里就不多说了。
3.2.3 说说有序广播是如何循环起来的?
我们知道,平行广播的循环很简单,只是在一个while循环里对每个动态receiver执行deliverToRegisteredReceiverLocked()即可。而对有序广播来说,原则上每次processNextBroadcast()只会处理一个BroadcastRecord的一个receiver而已。当然,此时摘下的receiver既有可能是动态注册的,也有可能是静态的。
对于动态注册的receiver,目标进程处理完广播之后,会间接调用am.finishReceiver()向AMS发出反馈,关于这一步,其实在前面罗列ReceiverDispatcher的performReceive()时已经出现过了,我们再列一下:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public void performReceive(Intent intent, int resultCode,
String data, Bundle extras,
boolean ordered, boolean sticky)
{
. . . . . .
Args args = new Args(intent, resultCode, data, extras, ordered, sticky);
if (!mActivityThread.post(args))
{
if (mRegistered && ordered)
{
IActivityManager mgr = ActivityManagerNative.getDefault();
. . . . . .
args.sendFinished(mgr);  // 请注意这一句!
}
}
}
Args继承于BroadcastReceiver.PendingResult,它调用的sendFinished()就是PendingResult的sendFinished():
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public void sendFinished(IActivityManager am)
{
synchronized (this) {
if (mFinished) {
throw new IllegalStateException("Broadcast already finished");
}
mFinished = true;
try {
if (mResultExtras != null) {
mResultExtras.setAllowFds(false);
}
if (mOrderedHint) {
am.finishReceiver(mToken, mResultCode, mResultData, mResultExtras,
mAbortBroadcast);
} else {
// This broadcast was sent to a component; it is not ordered,
// but we still need to tell the activity manager we are done.
am.finishReceiver(mToken, 0, null, null, false);
}
} catch (RemoteException ex) {
}
}
}
代码中的am.finishReceiver()会通知AMS,表示用户侧receiver已经处理好了,或者至少告一段落了,请AMS进行下一步动作。
而对于动态注册的receiver,情况是类似的,最终也是调用am.finishReceiver()向AMS发出回馈的,只不过发起的动作是在ActivityThread的handleReceiver()动作中。前文已经列过这个函数了,大家注意下面的句子即可:
?
1
2
3
4
5
6
7
8
9
10
11
private void handleReceiver(ReceiverData data)
{
. . . . . .
receiver.setPendingResult(data);
receiver.onReceive(context.getReceiverRestrictedContext(),
data.intent);
. . . . . .
if (receiver.getPendingResult() != null) {
data.finish();
}
}
ReceiverData也是继承于BroadcastReceiver.PendingResult的,它调用的finish()是PendingResult的finish():
?
1
2
3
4
5
6
7
8
9
10
11
public final void finish()
{
if (mType == TYPE_COMPONENT) {
. . . . . .
} else if (mOrderedHint && mType != TYPE_UNREGISTERED) {
if (ActivityThread.DEBUG_BROADCAST) Slog.i(ActivityThread.TAG,
"Finishing broadcast to " + mToken);
final IActivityManager mgr = ActivityManagerNative.getDefault();
sendFinished(mgr);
}
}
此处的sendFinished()内部最终也会调用到am.finishReceiver(),向AMS通告receiver已经处理好了。
AMS侧在收到finishReceiver语义后,执行:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public void finishReceiver(IBinder who, int resultCode, String resultData,
Bundle resultExtras, boolean resultAbort)
{
. . . . . .
try {
boolean doNext = false;
BroadcastRecord r = null;
synchronized(this) {
r = broadcastRecordForReceiverLocked(who);
if (r != null) {
doNext = r.queue.finishReceiverLocked(r, resultCode,
resultData, resultExtras, resultAbort, true);
}
}
if (doNext) {
r.queue.processNextBroadcast(false);
}
trimApplications();
} finally {
Binder.restoreCallingIdentity(origId);
}
}
可以看到,如有必要,会继续调用processNextBroadcast(),从而完成有序广播的循环处理。
3.2.4 说说有序广播的timeout处理
因为AMS很难知道一次广播究竟能不能完全成功递送出去,所以它必须实现一种“时限机制”。前文在阐述broadcastIntentLocked()时,提到过new一个BroadcastRecord节点,并插入一个BroadcastQueue里的“平行列表”或者“有序列表”。不过当时我们没有太细说那个BroadcastQueue,现在我们多加一点儿说明。
实际上系统中有两个BroadcastQueue,一个叫做“前台广播队列”,另一个叫“后台广播队列”,在AMS里是这样定义的:
?
1
2
BroadcastQueue mFgBroadcastQueue;
BroadcastQueue mBgBroadcastQueue;
为什么要搞出两个队列呢?我认为这是因为系统对“广播时限”的要求不同导致的。对于前台广播队列而言,它里面的每个广播必须在10秒之内把广播递送给receiver,而后台广播队列的时限比较宽,只需60秒之内递送到就可以了。具体时限值请看BroadcastQueue的mTimeoutPeriod域。注意,这个10秒或60秒限制是针对一个receiver而言的。比方说“前台广播队列”的某个BroadcastRecord节点对应了3个receiver,那么在处理这个广播节点时,只要能在30秒(3 x 10)之内搞定就可以了。事实上,AMS系统考虑了更多东西,所以它给一个BroadcastRecord的总时限是其所有receiver时限之和的2倍,在此例中就是60秒(2 x 3 x 10)。
对于平行receiver而言,时限的作用小一点儿,因为动态receiver是直接递送到目标进程的,它不考虑目标端是什么时候处理完这个广播的。
然而对于有序receiver来说,时限就比较重要了。因为receiver之间必须是串行处理的,也就是说上一个receiver在没处理完时,系统是不会让下一个receiver进行处理的。从processNextBroadcast()的代码来看,在处理有序receiver时,BroadcastRecord里的nextReceiver域会记录“下一个应该处理的receiver”的标号。只有在BroadcastRecord的所有receiver都处理完后,或者BroadcastRecord的处理时间超过了总时限的情况下,系统才会把这个BroadcastRecord节点从队列里删除。因此我们在processNextBroadcast()里看到的获取当前BroadcastRecord的句子是写死为r = mOrderedBroadcasts.get(0)的。
在拿到当前BroadcastRecord之后,利用nextReceiver值拿到当前该处理的receiver信息:
?
1
2
3
int recIdx = r.nextReceiver++;
. . . . . .
Object nextReceiver = r.receivers.get(recIdx);
当然,一开始,nextReceiver的值只会是0,表示第一个receiver有待处理,此时会给BroadcastRecord的dispatchTime域赋值。
?
1
2
3
4
5
6
int recIdx = r.nextReceiver++;
r.receiverTime = SystemClock.uptimeMillis();if (recIdx == 0) {
r.dispatchTime = r.receiverTime;
r.dispatchClockTime = System.currentTimeMillis();
. . . . . .
}
也就是说,dispatchTime的意义是标记实际处理BroadcastRecord的起始时间,那么这个BroadcastRecord所能允许的最大时限值就是:
dispatchTime + 2 * mTimeoutPeriod * 其receiver总数
一旦超过这个时限,而BroadcastRecord又没有处理完,那么就强制结束这个BroadcastRecord节点:
?
1
2
3
4
5
6
7
8
if ((numReceivers > 0) &&
(now > r.dispatchTime + (2*mTimeoutPeriod*numReceivers)))
{
. . . . . .
broadcastTimeoutLocked(false); // forcibly finish this broadcast
forceReceive = true;
r.state = BroadcastRecord.IDLE;
}
此处调用的broadcastTimeoutLocked()的参数是boolean fromMsg,表示这个函数是否是在处理“时限消息”的地方调用的,因为当前是在processNextBroadcast()函数里调用broadcastTimeoutLocked()的,所以这个参数为false。从这个参数也可以看出,另一处判断“处理已经超时”的地方是在消息处理机制里,在那个地方,fromMsg参数应该设为true。
大体上说,每当processNextBroadcast()准备递送receiver时,会调用setBroadcastTimeoutLocked()设置一个延迟消息:
?
1
2
3
long timeoutTime = r.receiverTime + mTimeoutPeriod;
. . . . . .
setBroadcastTimeoutLocked(timeoutTime);
setBroadcastTimeoutLocked()的代码如下:
?
1
2
3
4
5
6
7
8
final void setBroadcastTimeoutLocked(long timeoutTime)
{    if (! mPendingBroadcastTimeoutMessage)
{
Message msg = mHandler.obtainMessage(BROADCAST_TIMEOUT_MSG, this);
mHandler.sendMessageAtTime(msg, timeoutTime);
mPendingBroadcastTimeoutMessage = true;
}
}
只要我们的receiver能及时处理广播,系统就会cancel上面的延迟消息。这也就是说,但凡事件泵的handleMessage()开始处理这个消息,就说明receiver处理超时了。此时,系统会放弃处理这个receiver,并接着尝试处理下一个receiver。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
final Handler mHandler = new Handler()
{
public void handleMessage(Message msg) {
switch (msg.what)
{
. . . . . .
case BROADCAST_TIMEOUT_MSG:
{
synchronized (mService)
{
broadcastTimeoutLocked(true);
}
} break;
}
}
};
broadcastTimeoutLocked()的代码截选如下:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
final void broadcastTimeoutLocked(boolean fromMsg)
{
if (fromMsg) {
mPendingBroadcastTimeoutMessage = false;
}
if (mOrderedBroadcasts.size() == 0) {
return;
}
long now = SystemClock.uptimeMillis();
BroadcastRecord r = mOrderedBroadcasts.get(0);
. . . . . .
. . . . . .
finishReceiverLocked(r, r.resultCode, r.resultData,
r.resultExtras, r.resultAbort, true);
scheduleBroadcastsLocked();
. . . . . .
}
可以看到,当一个receiver超时后,系统会放弃继续处理它,并再次调用scheduleBroadcastsLocked(),尝试处理下一个receiver。
4 尾声
有关Android的广播机制,我们就先说这么多吧。品一杯红茶,说一段代码,管他云山雾罩,任那琐碎冗长,我自冷眼看安卓,瞧他修短随化。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
Android应用程序发送广播(sendBroadcast)的过程分析
BroadcastReceiver的原理和使用
Android Broadcast 分析
android 优化耗电量
【转】Activity的启动流程
Activity正常启动过程
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服