打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
你猜不到的数学猜想

数学猜想并不总是对的,错误的数学猜想不占少数。只不过因为反例太大,找出反例实在是太困难了。这篇文章收集了很多“大反例”的例子,里面提到的规律看上去非常诱人,要试到相当大的数时才会出现第一个反例。

最多分为多少块

 圆上有 n 个点,两两之间连线后,最多可以把整个圆分成多少块?

上图显示的就是 n 分别为 2 、 3 、 4 的情况。可以看到,圆分别被划分成了 2 块、 4 块、 8 块。规律似乎非常明显:圆周上每多一个点,划分出来的区域数就会翻一倍。

事实上真的是这样吗?让我们看看当 n = 5 时的情况:

果然不出所料,整个圆被分成了 16 块,区域数依旧满足 2n-1 的规律。此时,大家都会觉得证据已经充分,不必继续往下验证了吧。偏偏就在 n = 6 时,意外出现了:

此时区域数只有 31 个。

以 2 为底的伪素数

     下面是当 n 较小的时候, n 与 2n - 2 的值。

似乎有这样的规律: n 能整除 2n - 2 ,当且仅当 n 是一个素数。如果真是这样的话,我们无疑有了一种超级高效的素数判定算法( 2n 可以用二分法速算,期间可以不断模 n )。国外数学界一直传有“中国人 2000 多年前就发现了这一规律”的说法,后来发现其实是对《九章算术》一书的错误翻译造成的。再后来人们发现,这个规律竟然是错误的。第一个反例是 n = 341,此时 341 能够整除 2341 - 2 ,但 341 = 11 × 31 。

事实上,根据 Fermat 小定理,如果 p 是素数,那么 p 一定能整除 2n - 2。不过,它的逆定理却是不成立的,上面提到的 341 便是一例。我们把这种数叫做以 2 为底的伪素数。由于这种素数判定法的反例出人意料的少,我们完全可以用它来做一个概率型的素数判定算法。事实上,著名的 Miller-Rabin 素性测试算法就是用的这个原理。

Perrin 伪素数

定义 f(n) = f(n - 2) + f(n - 3) ,其中 f(1) = 0 , f(2) = 2 , f(3) = 3 。这个数列叫做 Perrin 数列。

似乎有这么一个规律: n 能整除 Perrin 数列的第 n 项 f(n) ,当且仅当 n 是一个素数。如果这个规律成立的话,我们也将获得一个效率非常高的素数检验方法。根据 MathWorld 的描述,1899 年 Perrin 本人曾经做过试验,随后 Malo 在 1900 年, Escot 在 1901 年,以及 Jarden 在 1966 年都做过搜索,均未发现任何反例。直到 1982 年, Adams 和 Shanks 才发现第一个反例 n = 271 441 ,它等于 521 × 521 ,却也能整除 f(271 441) 。下一个反例则发生在 n = 904 631 的时候,再下一个反例则是 n = 16 532 714 。这种反例被称为 Perrin 伪素数。

最经典的大反例

说到大反例,这是我最喜欢举的例子。下面是大于 1 的正整数分解质因数后的结果:

    2 = 2

     3 = 3

     4 = 2 × 2

     5 = 5

     6 = 2 × 3

     7 = 7

     8 = 2 × 2 × 2

     9 = 3 × 3

     10 = 2 × 5

     ...

其中,4、6、9、10 包含偶数个质因子,其余的数都包含奇数个质因子。你会发现,在上面的列表中一行一行地看下来,不管看到什么位置,包含奇数个质因子的数都要多一些。1919 年,George Pólya 猜想,质因子个数为奇数的情况不会少于 50% 。也就是说,对于任意一个大于 1 的自然数 n ,从 2 到 n 的数中有奇数个质因子的数不少于有偶数个质因子的数。这便是著名的 Pólya 猜想。

 Pólya 猜想看上去非常合理――每个有偶数个质因子的数,必然都已经提前经历过了“有奇数个质因子”这一步。不过,这个猜想却一直未能得到一个严格的数学证明。到了 1958 年,英国数学家 C. B. Haselgrove 发现, Pólya 猜想竟然是错误的。他证明了 Pólya 猜想存在反例,从而推翻了这个猜想。不过,Haselgrove 仅仅是证明了反例的存在性,并没有算出这个反例的具体值。Haselgrove 估计,这个反例至少也是一个 361 位数。

1960 年,R. Sherman Lehman 给出了一个确凿的反例:n = 906 180 359。而 Pólya 猜想的最小反例则是到了 1980 年才发现的:n = 906 150 257。

 Fermat 大定理还能推广吗?

Fermat 大定理说,当 n > 2 时,方程 xn + yn = zn 没有正整数解。 Euler 曾经猜想,当 n > k 时,方程 x1n + x2n + … + xkn = yn 都没有正整数解。 1986 年,Noam Elkies 给出了方程 x4 + y4 + z4 = w4 的一个正整数解,从而推翻了这个猜想。这个反例是:2 682 4404 + 15 365 6394 + 18 796 7604 = 20 615 6734 。 

XX 型平方数

11, 22, 33, 44, 55, 66, 77, 88, 99, 1010, 1111, 1212, … 都不是完全平方数。有没有什么数,把它连写两次后,正好是一个完全平方数呢?有。第一个这样的数是 13 223 140 496 ,把它连写两次将得到 1 322 314 049 613 223 140 496 ,是 36 363 636 364 的平方。第二个这样的数则是 20 661 157 025 ,它对应了 45 454 545 455 的平方。

总是相等吗?

下面是 n 为正整数时, 2 / (21/n - 1) 取上整的结果与 2n / ln(2) 取下整的结果:

这两者的结果总是相等吗?不是的。第一个反例是 n = 777 451 915 729 368,前者算出来的结果是 2 243 252 046 704 767 ,但后者是 2 243 252 046 704 766 。下一个反例则出现在 n = 140 894 092 055 857 794 的时候。

至今仍未找到的反例

有没有什么猜想,明明已经被推翻了,所有人都知道存在反例,但因为反例实在是太大了,直到现在仍然没有找到呢?有。下面这张表展示了 n 取不同值时 pi(n) 和 li(n) 的值,其中 pi(n) 表示不超过 n 的素数的个数,li(n) 则是对数积分 ∫0n dx/ln(x) 。

pi(n) 是否永远小于 li(n) 呢?1914 年,Littlewood 证明了存在一个大数 n 使得 pi(n) ≥ li(n) ,不过却并没有给出一个具体的 n 值来。1955 年,Skewes 给出了这样的 n 值的一个上界:在 10^(10^(10^963)) 以内,必有一个满足 pi(n) ≥ li(n) 的 n 。

虽然数学家们正在不断地改进上界(目前的上界大约是 e727.9513 ),但仍然无法找出一个具体的 n 来。原因很简单――这个反例实在是太大了。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
千万不要迷信规律:大反例合集
数学假象
历时160年,困扰无数大数学家的黎曼猜想或被量子力学解决?
那些价值百万的数学题
数学中那些错误的猜想!欧拉猜想、费马数猜想、高斯猜想!
新消息:“破解”60年未解世界数学难题
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服