打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
负负得正的历史及简单证明
userphoto

2011.07.12

关注

网上的资料,很多是不能直接访问的,又不是什么颠覆宇宙的真理,值得这么左遮右挡的吗?
我不知道是不是中国大陆的人都太聪明早就明白了为什么负负得正或者对这个问题没有兴趣,反正中国大陆的搜索结果有用的或相关的很少。这个就给像我一样小时候没弄明白的人看看。

下面第一个是我觉得解释的最简单最适合给孩子讲的证明方式,第二个是关于负负得正的历史和一些粗浅证明,如果你想看原文可以点击小标题。
 
簡單說明負負得正的原因
 

這種東西妳如果去問數學系大三學過體論 (field) 的人應該就會。其他理工科,尤其工科的人通常並不管到這些細節 
 

用最粗略最像人話的方式講,我們的思考是先有負數﹝也就是加法與 "0"﹞、乘法﹝與 "1"﹞的概念以後,才出現負數怎麼跟負數相乘的問題。為了不破壞先有的這些概念,或者說,在服從這些概念之下,可以推導出來負負「只好」得正。

這個地方不太能怪當年老師沒教「為什麼」,一來是因為小時候教的加法、乘法本身就已經有邏輯上含混帶過的部分,自然到了負負得正這種地方就會更講不清。二來老師﹝如果夠好的話﹞應該會舉一些例子讓學生「背」的時候甘願一些,例如老師可能會問:

(-2)×(-3)+2×(-3)=?


那因為你已經學過很多 2×3+5×3=(2+5)×3, 3*(-8)+9*(-8)=(3+9)*(-8) 這類把相同因數提出來的運算規則,妳應該就會期望

(-2)×(-3)+2×(-3)= (-2+2)×(-3)


接著,因為 -2+2 = 0 這點是確定的,所以上面的式子的後半段變成0×(-3) = 0。也就是(-2)×(-3)+2×(-3) = 0.

另一方面,
2×3+2×(-3) = 2×(3+(-3)) = 2×0 = 0


兩個式子相比較,就有
(-2)×(-3) = 2×3

也就是負負得正的意思。

上面這些看起來像個傻瓜例子,但等到數學思考的成熟度夠的時候,自然就會清楚整個敘述推理過程裡面,何者該先何者該後,哪裡是真正的問題所在。或者說,把上面的例子裡的 2, 3 換成抽象的 a, b ,補上一些漏掉的超小推論,其實就是大學代數課本裡面的證明了。但難的是在培養這種抽象能力並不可能一步登天,必須給學生足夠的時間與樂趣去「玩」數字,讓她自己玩到夠說服自己 (-2)×(-3) 的確只能等於 2×3。
 


如何推論負負得正假設一負數為-a首先必須知道 -a x 0 = 0 ---(1). 再者須知另負數 -b, -b + b = 0 ---(2).  (1)中的第一個 0 可用(2)-b + b 代替 -a x (-b + b) = 0 => (-a x -b) + (-a x b)  = 0  => -a x -b = a x b.  故一負數-a 乘以另一負數 -b 等於一正數 a 乘以另一 b 得證負負得正.

 

如何推論 -a  x b = -ab-a  x b等於 -a 加自己本身b= b x (-a) = -ab (b 乘以 -a -a乘以b是相等的.

 

 

解二:

        ? R (實數 n 1 0
 
     
      如 n=1, 證明 1=(-1)×(-1)

 

n  m ? R (實數), (1)m×n = [(-1)×(- m)]×[(-1)×(- n)] = [(-1)×(-1)]×[(- m)×(-n)] = 1× (- m)×(- n) = (- m)×(- n). 所以負負得正.

为什么负负得正
 
为什么“负负得正”?对于这个问题,也许你根本没有考虑,也许你的解释是“课本规定如此”。这个回答不能满足具有好奇心和求知欲的大家,请大家了解一下“负负得正”的发展史。

众所周知,负数概念最早出现在中国,在《九章算术》中方程章给出正负数的加减运算法则,而负负得正直到13世纪末才由数学家朱士杰给出。在《算学启蒙》(1299)中,朱士杰提出:“明乘除法,同名相乘得正,异名相乘得负”。

公元7世纪,印度数学家婆罗笈多(brahmayup-ta)已有明确的正负数概念,及其四则运算法则:“正负相乘得负,两负数相乘得正,两正数得正。”

直到18世纪还有一些西方数学家认为“负负得正”这一运算法则是个谬论。甚至到了19世纪,英国还有一些数学家不接受负数,如英国数学家弗伦得(1757—1841)抨击那些谈“负负得正”的代数学家,认为负数有悖常理,“只有那些喜欢信口开河,厌恶严肃思维的人才支持这种数得使用。”

事实上直到19世纪中叶以前,负负得正的运算,则在学习代数课本中并没有得到正确的解释,法国文豪司汤达(1783—1843)在学生时代就曾被这个法则困扰了很久,他的两位数学教师迪皮伊先生和夏倍尔都未能给他一个令他信服的解释,司汤达因而对数学和数学教师产生了不信任感,他说:“到底是我的两位老师在骗我呢还是数学本身就是一场骗局呢?”显然为了减少学生学习负数乘法运算的理解困难,利用生硬的“规定”的方法直接引入负负得正的法则是不可取的。下面是引入方法帮助同学们理解。

每个孩子都是听着故事长大的。所以,他们应当对故事有着更多的兴趣和热情。而对于学生来说。对比较强烈的概念会给他们留下较为深刻的印象,如好与坏、善与恶等。下面这个模型应该可以给学生以更直观的感受。

故事模型

好人(正数)或坏人(负数)进城(正数)或出城(负数)好(正数.)与坏(负数),如果好人(+)进城(+)对于城镇来说是好事(+)。所以(+)×(+)=+:如果好人(+)

出城(-),对于城镇来说是坏事(-),如果坏人(-)进城(+)对城镇来说是坏事(-)即(-)×(+)=-所以如果坏人(-)出城(-)对于城镇来说是好事(+),所以(-)×(-)=+

“负债”模型

M.克莱因认为,“如果记住物理意义,那么负数运算以及负数和正数混合运算是很容易理解的”。他解决了困扰人们多年的“两次负债相乘的结果是神奇的收入”的问题。

一人每天欠债5美元,给定日期(0美元)3天后欠债15美元。如果将5美元的债记成-5,那么每天欠债5美元欠债3天可以数学来表达:3×(-5)=-15。同样一人每天欠债5美元,那么给定日期(0美元)3天前,他的财产比给定的日期的财产多15美元,如果我们用-3表示3天前,用-5表示每天欠债,那么3天前他的经济情况可表示为(-3)×(-5)=15

运动模型

一个人沿着公路散步,规则如下:选定向右的方向为正方向,那么向左的方向为负方向。即向右走为正数,向左走用负数表示,依照时间的顺序,将来的时间用正值,过去的时间为负值,人的初始位置在零点。









    +4               ×               -3            =              -12



测量型模型

某气象站测得海拔每升高1千米,温度降低0.6度,观察地的气温是零度。问在观察地点以下3千米的地方气温是多少度?我们规定,气温升高为正,气温下降为负。观察地点以下为负,观察地点以上为正。易得上述问题的算式为(-0.6) ×(-3)=1.8

动手模型

在这个模型中我们需要摄像机作为道具,也希望同学们从自己动手的过程中理解“实践出真知”的道理

假设一个干净的塑料水箱有一个透明的排水管,排水管的排水速度为每分钟3加仑。用摄像机拍下排水管前几分钟的排水过程(这里的“排水”看作为负数,如果我们播放时放2分钟,可以看出水箱里的水减少6加仑,而3分钟后,水减少9加仑,假设我们现在将录像带到放2分钟(这里的“倒放”看作负数),那么水箱的水会增加6加仑的水。

如何解释“负负得正”

现实模型不足以让司汤达这样的聪明孩子完全信服。这时候,我们还可以用如下方法来解释为何“负负得正”。

第一种是直接用运算律的方法:

(-1)×(-1)=(-1)×(-1)+0×(-1)

=(-1)×(-1)+[(-1)+1] ×1

=(-1)×(-1)+(-1) ×1+1×1

=(-1) ×(-1+1)+1

=1

第二种是反证法:假设负负得正,则由假设: (-1)×(-1)=[2+(-1)]

                                                 =(-1) ×2+(-1)             (1)

另一方面:            (-1)×(+1)=[1+(-2)] ×(+1)=1+(-2) ×1            (2)

若正负得负,则由(1)得-1=-3,不可能:若正负得正,则由(2)得1=3也不可能。也就是说,无论一个正数与一个负数的乘积是正数还是负数,上面的结论都是不成立的。因此-1×(-1 )= —1的假设是错误的。必有(-1)×(-1)=1

  上面的“证明”严格地说不过是两种解释而以。因为我们的依据是正数和零所满足的运算律包括:0+a=a,0×a=0;a+b=b+a;a×b=b×a;等。19世纪德国数学家汉克尔早就告诉我们。在形式化的算术中。“负负得正”是不能证明的,大数学家克莱恩。也提出忠告:不要试图地去证明符号法则的逻辑必要性,“别把不可能的证明讲得似乎成立”。实际上面的“证明”表明:当我们把非负整数所满足的运算律用于负数时,两个负数相乘的结果只能是正数。数集扩充所遵循的原则之一就是运算律的无矛盾性,诚然,你可以规定“负负得正”,但是这样做时,你至少必须放弃正整数集所满足的其中一个运算律。这大概是我们能向汤姆达亮出的最后一张底牌了。然而,数学教育研究结果表明:孩子知识的建构并不是通过演绎推理,而是通过经验收集、比较结果、一般化等手段来完成的,仅仅向学生讲述运算率并不能收到你所期望的效果,因为学生并不情愿利用这些运算率。这与历史的启示是一致的,无疑,现实模型是我们不可缺的教学方法。



本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
东西方负数认识简史(转)
下列结论中,错误的是[]A.零不是正数B.零是整数C.零不是自然数
负数的产生经历了漫长且曲折的过程
第十三课时 中国分数、小数和负数发展历程
五年级:美妙数学之“负数知多少”(0710五)
绝对值加减运算法则
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服