打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
CMU researchers develop 3
Credit: Carnegie Mellon University Electrical and Computer Engineering

We are in the midst of a 3D revolution. There are a wide range of commercially available devices that are capable of sensing the 3D shape of an object and printing the shape to create a three-dimensional photocopy. As both scanning and printing technologies mature, it is widely expected that we will move from simple plastic photocopies to realistic renditions of objects that have complex visual properties.

Researchers in CMU are developing a 3D scanning technology that can capture not just the 3D shape of an object but also how each surface element on the object interacts with . For opaque surfaces, interactions with light are well represented by the so-called bidirectional reflectance distribution function (BRDF) which characterizes how incident light on a material is distributed in various directions. The proposed technique is unique in that it estimates the BRDF at each surface element of the object in isolation which makes the technique applicable to objects which are extremely complex, visually.

The proposed idea solution relies on a simple idea: suppose we know how many commonly occurring materials interact with light, then we can try to explain the visual properties of an object with unknown composition in terms of the behavior exhibited by the commonly occurring materials. This reduces the complexity of the problem tremendously and we can both model and analyze the and the reflectance of the object.

We envision three applications where this would be beneficial: first, augmented reality where we want to capture realistic renditions of real world objects in real-time so as to manipulate them; second, 3D printing of visually-complex materials; and third, the digital museum projects for scanning art pieces and enabling access via the internet.

This video is not supported by your browser at this time.

Aswin Sankaranarayanan's work was published in The 2015 International Conference on Computational Photography held in Houston, TX.

Explore further: New computational technique advances color 3-D printing process

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
Caltech Researchers Use HoloLens to Give Directions & Object Identification to the Visually Impa
The Proper Use Of Fonts In Your Resume
maya---表面种植物体工具Plant Objects on surface v1.0发布
Smoking and Caffeine May Protect Against Park...
译言网 | 【图集】 震撼人心的微观世界 (上)
研究者称自闭症患者的头脑发育慢于正常人
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服