打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
Doubling the lifetime of lithium

Since they were first commercialised in 1991, lithium-ion batteries have come a long way. The global market is expected to reach EUR 30 billion by 2019, with applications in almost every industry – from intermittent renewable energy storage devices to smartphones and electric cars.

But as the machines they power become greedier, engineers across the world have had to start looking into alternatives with a higher storage capacity. One of these alternatives resides in lithium-air (Li-air) technology – batteries consisting of metal-based anode and air-cathode which constantly extract oxygen from the ambient air.

'The main advantage of a lithium-air battery is its high energy density, which is theoretically 10 times higher than that of ,' explains Prof Qiuping Chen, associate Professor at the Polytechnic University of Turin and coordinator of the STABLE project. 'The biggest challenge, however, is to improve their lifecycle which was only of 50 cycles maximum before the STABLE project.' This figure pales in comparison to that of lithium-ion batteries, which can reach from 400 to 1200 cycles over their lifetime.

STABLE's objective was straightforward: increasing this capacity from 50 to 100-150 cycles and demonstrating this breakthrough in functional cells within three years, with the emerging market of electric car batteries in mind. 'The project is a complete success in this regard, with a life that has reached 151 cycles,' enthuses Prof Chen. 'Although the impact on car mile range per cycle largely depends on the , dimension and quantity of battery cells, we expect it to be quite important.'

To get to this result, Prof Chen and his team focused their research on battery anode, cathode, electrolyte materials and technologies, as well as assembly techniques for batteries which play a central role in their performance, cost and environmental impact. 'We improved the lifetime and cyclability of Li-air batteries by different means. First we found highly active bifunctional catalysts capable of effectively regenerating the battery. Then, we protected the Lithium anode from dendrites formation using suitable membranes, and finally we increased the stability of the electrolyte to enhance solubility of Li2O2 and avoid cathode clogging.'

Prof Chen believes that the multidisciplinary nature of the consortium, with partners specialised in material sciences, electrochemistry, battery assembly design and others, is what made this success possible. And it should also contribute to its future commercialisation.

'This was an early stage research project,' Prof Chen concludes. 'We successfully reached our objectives but only validated these results at laboratory scale. We still have a lot of work ahead in order to bring our new batteries to the market, with challenges ranging from raw materials production to the improvement of Li-air technologies and equipments.'

Explore further: Semiliquid battery competitive with both Li-ion batteries and supercapacitors

More information: For further information, visit the STABLE project website: www.fp7-stable.com/

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
锂电池N/P是动态变化的参数
基础| 锂电池化学:电池的电压和容量是如何产生的?
Tesla Silicon Anode for 4680 Battery Cell: What's ...
Millions of electric cars are coming. What happens to all the dead batteries? | Science | AAAS
Pressure helps to make better Li
仙童|Fairchild快恢复二极管常用型号及参数说明
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服