打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
Next

Although silicon semiconductors are nearly universal in modern electronics, devices made from silicon have limitations—including that they cease to function properly at very high temperatures. One promising alternative are semiconductors made from combinations of aluminum, gallium, and indium with nitrogen to form aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN), which are stronger and more stable than their silicon counterparts, function at high temperatures, are piezoelectric (that is, generate voltage under mechanical force), and are transparent to, and can emit, visible light.

Conventional processes for producing AIN layers run at temperatures as high as 1150 degrees Celsius, and offer limited control over the thickness of the layers. Now a new technique, described in the AIP Publishing journal Applied Physics Letters, offers a way to produce high-quality AlN layers with atomic-scale thickness and at half the temperature of other methods.

Neeraj Nepal and colleagues of the United States Naval Research Laboratory in Washington, D.C. formed AIN layers using atomic layer epitaxy (ALE), in which materials are "grown," layer-by-layer, by sequentially employing two self-limiting chemical reactions onto a surface.

"For instance to grow aluminum nitride, you would inject a pulse of an aluminum precursor into the growth zone where it would coat all surfaces," explained Nepal. "After purging any excess aluminum precursor away, you would then 'build' the crystal by injecting a pulse of the nitrogen precursors into the growth zone, where it reacts with the aluminum precursor at the surface to form a layer of AlN. Then you'd purge any excess nitrogen and reaction products away and repeat the process."

With this process, the researchers produced a material with qualities similar to those synthesized at much higher temperatures, but under conditions that allow it to be integrated in new ways for the fabrication of devices for technologies such as transistors and switches.

The work, Nepal says, expands the potential for new advanced specialty materials that could be used, for example, in next-generation high-frequency radiofrequency electronics, such as those used for high-speed data transfer and cell phone services.

Explore further: Solar nanowire array may increase percentage of sun's frequencies available for energy conversion

More information: The article, "Epitaxial Growth of AlN Films via Plasma-assisted Atomic Layer Epitaxy" by N. Nepal, S. B. Qadri, J. K. Hite, N.A. Mahadik, M.A. Mastro, and C. R. Eddy, Jr. appears in the journal Applied Physics Letters: dx.doi.org/10.1063/1.4818792

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
Death toll reaches 8,485 in Nepal's earthquake
0.18 LOGIC FLOW一百问
研究综述:原子层刻蚀的研究进展(上)——发展概述
研究发现:气候变暖导致秋天树叶提前变色掉落
SAP and mSAP in Flexible Circuit Fabrication | Altium
附录1—渗硼泵筒性能简介(英文)
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服