打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
数学动态图,炫酷无比!

你真的以为你懂三角函数吗?

请听题:三角函数既然是函数,那它的自变量和因变量都是什么?

图片作者:LucasVB(1ucasvb)

从这张图里可以很明显看到,所谓正弦函数,其实就是圆上任意一点的y坐标(红)和弧长(蓝)之间的关联。左图的蓝色弧长和右图的蓝线完全一样。

而弧长又和弧度是完全对应的。为什么高中老师不肯用经典的360度角而一定要教你奇怪的“弧度”?就是因为这个对应。1弧度就是长度为1个半径的弧所对应的角,π弧度就是正好半个圆——相应的,之所以 sinπ=0,正是因为当蓝线走了一个π(一个半圆)的时候,正好也走回到了 y = 0 的地方。

图片作者:又是LucasVB(1ucasvb)

那余弦函数呢?留给读者作为练习——

图片作者:还是LucasVB(1ucasvb)

——别打了,我说还不行吗……余弦函数就是圆上任意一点的x坐标弧长之间的关联,只不过在画函数的时候,把圆上点的x坐标打了个弯,对应成了函数曲线上的y坐标,就像这张图里的蓝线那样。

为了体现余弦函数的这个对应,我们也可以直接把函数本身竖过来,就成了这样:

图片来源未知,但画得这么丑,肯定不是LucasVB

当然,这种对应也可以用在其它几何图形上,只不过就不如圆那么美丽了,比如下面这个丑陋的心形。

图片作者:当然是LucasVB(1ucasvb)

要不为什么说圆是最完美的身材!(并不是)

极坐标的魔法

如何把直角坐标变成极坐标?看我的:

图片作者:依然是LucasVB(1ucasvb)……

这是什么黑魔法……

别急,听我解释,事情就是你看到的那样:

首先我们需要把函数沿直线 y = x 翻转。之所以要有这一步,是因为极坐标里我们很武断地把0度定义在了朝右。如果0度是(更自然的)朝上,那就不需要这一步了。

然后,我们把Y轴折弯过来,直到它缩成一个点。成功!

思路是这样的:直线在几何上可以认为是具有无限直径、无限曲率半径的一个圆,永远不向自身弯折。但如果我们逐渐降低曲率半径,从无限一直降到零,就等于是把Y轴变成一个逐渐缩小的圆、最后变成一个点。而原来直角坐标的“Y轴”所承载的信息,在转换中就逐渐移交给了极坐标的“角度”。

注意,这个转换体现的是极坐标和直角坐标之间不同的对应方式,是把一种对应变成了另一种对应,而不是说把同一个曲线从直角坐标表达式换成极坐标表达式。前后两个是不同的曲线。

正十七边形尺规作图

图片作者:Aldoaldoz

正十七边形可以用尺规作出来,这是高斯1796年19岁时证明的。这是正多边形尺规作图两千年来头一次有所突破——换句话说,上一次人们发现新的正多边形尺规作图法还是在古希腊。

但是,高斯本人实际上并不会做正十七边形。第一个真正的正十七边形尺规作图法直到1825年才由约翰尼斯·厄钦格(Johannes Erchinger)给出,而上面的这个方法——“卡莱尔圆法”则要更晚。(猜猜这个卡莱尔是谁?托马斯·卡莱尔。对,就是那个《法国大革命史》和《论英雄、英雄崇拜与历史上的英雄业绩》的作者。)

那高斯怎么就知道正十七边形是可以做出来的呢?因为他懂数学。他已经知道,如果一个正多边形内角的三角函数能用加减乘除和开平方表达出来,那就意味着这个正多边形能用尺规做出来。(尺规等价于只使用圆和直线的交点作图,直线的表达式是二元一次方程,圆的表达式是二元二次方程,所以只用到了加减乘除和开平方。)而他又证明了,只要正多边形的边数n是费马素数,那么就能这么表达。当时人们已经知道前五个费马素数是3、5、17、257和65537,所以高斯等于一举证明了这五种正多边形都是尺规可做的。

不过,正三边形(好吧,正三角形)和正五边形人们早知道了,而正257边形什么的做起来又太麻烦,所以最后正十七边形成了最出名的。

那么正十七边形的对应三角函数应该怎么表达?高斯的《算术研究》给出了结果:

说三角函数怎么好意思不提那套著名的傅里叶变换图呢?

所以:

变身吧傅里叶

不,不是变成夜礼服。

图片作者:LucasVB

和某些公然嘲笑应用的数学家不同,傅里叶特别重视应用领域,而他的傅里叶变换也不负众望成了工程和物理领域里最重要的数学公式之一。

这里展示的傅里叶变换(的三角函数形式)的基本原理是,多个正余弦波叠加(蓝色)可以用来近似任何一个原始的周期函数(红色)。这样近似的效果有点像称量的砝码:不管你原物的质量多奇怪,我总能化归成“5个1斤砝码、3个1两砝码”这样几个基本单位之和。上图末尾处蓝色的竖线就可以想象成“我用了5个1号波、3个2号波”等等。这在计算上多省事儿、处理上多方便就不用说了……

几个傅里叶分解实例,用波叠加出分段函数。图片作者:LucasVB

当然傅里叶分解的好处和用法远不止这些,但那就是一本书的篇幅了。打住。

如果你还记得酷炫动图(三)中讨论过的圆和三角函数之间的密切联系,那你也能看懂下面这张图:

图片作者:Matthew Henderson

大地上的河流

图片来源:google

图片作者可能是blog.matthen.com

Hello?走错片场了吧?标题写的是数学啊?

没有错,这是数学里诸多脑洞大开的定理之一:平原上的河流,从源头到出海口的干流总长度(蓝线)和源头到出海口之间的直线距离(红线)的比值,平均而言比3大一点儿。更准确地说,这个比值应当趋近于π。

图中所示是秘鲁艾尔·西拉保护区里的一条河流,虽然因为地形和时间尺度原因,其比值更接近于2.5,不过意思大家已经看到了。

但是这真的是数学!因为河流的自组织过程很容易形成分形。

一条完美的笔直河流是平衡的,但这是不稳定的平衡。现实中的河流总会因为各种原因而有所弯曲,一旦河道打弯,弯道内侧和外侧的水流速度就会出现差异,外侧遭到冲刷,而内侧则发生沉积。久而久之弯曲会越来越大,最终河道裁弯取直形成牛轭湖,开始新的循环。

而1996年《科学》上的一篇论文认为,对于平原上的河流,这一过程的临界态是可以用分形来描述的。下面两张图是作者汉斯-亨里克·斯托罗姆(Hans-Henrik Stolum)用纯粹的数学公式推演出来的河流演化,可以和上图对比一下。

无限的黄金(率)

图片作者:LucasVB

这个φ不是别的,就是黄金分割率那个1.618了。当然如果你喜欢0.618,把前面的1去掉就是。

常用的黄金分割表达方式是

,但是有一个有趣的连分数表达式,就是上面那张停不下来的动图。

当然实际中我们没法无穷地这么除下去……用这个连分数迭代来近似黄金比例的话,误差程度是:

图片来源:wikipedia

还不错嘛。

为什么这个连分数无限迭代下去可以用来算黄金?注意它的格式:x = 1 + 1/x

而黄金率的定义你还记得吗?在下图中,如果 (a + b)/a = a/b ,那么这个比值就是黄金律。

图片来源:wikipedia

如果我们令 a/b = φ,那么上式就立刻化简成了

如果你学过相关的迭代法求近似解理论,现在应该已经在颔首微笑了。如果没有,那么想着“这两个式子形式完全一样肯定有什么关联”就好……


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
酷炫动图(四):更多的数学
换个角度看科学太性感
动画呈现:正十七边形尺规作图
如何理解拉普拉斯变换?
动态演示:据说是高斯19岁时尺规做出来的正十七边形,厉害!
“正17边形”可尺规作图的高斯证明步骤详解,很有可能你看不懂
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服