打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
量化射频(RF)干扰对线性电路的影响




量化射频(RF)干扰对线性电路的影响

作者:Art Kay 


典型的精密运算放大(运放)器可以有1MHz的增益带宽积。从理论上讲,用户可能期望千兆赫水平的RF信号衰减到非常低的水平,因为它们远远超出了放大器的带宽范围。然而,实际情况并非如此。事实上,包含在放大器内的静电放电(ESD)二极管、输入结构和其它非线性元件会在放大器的输入端对RF信号进行“整流”。在实际意义上,RF信号被转换成一种直流(DC)偏移电压,这种DC偏移电压添加了放大器输入偏移电压。

用户也许会问:“对于由给定RF信号产生的DC偏移电压,我如何确定其幅度?”其实,放大器对RF干扰的敏感性取决于该放大器所采用的设计和技术。例如,许多现代放大器具有内置的RF滤波器,可尽量减少出现该问题的几率。该滤波器对低增益带宽运放而言是最有效的,因为该滤波器的截止频率可以设置成较低的频率,这能提供更高的RF信号衰减系数。除此之外,一些技术产品具有更强的内在抗RF干扰能力。例如,比起双极型器件,大多数互补金属氧化物半导体(CMOS)器件具有更强的抗RF干扰能力。输入级设计等其它因素也可影响抗RF干扰能力。

考虑到所有这些因素,电路板和系统级设计人员应如何选择放大器呢?答案是:要看电磁干扰抑制比(EMIRR)。该技术指标类似于电源抑制比和共模抑制比,因为它在放大器的输入端将RF干扰的影响转换成DC偏移电压。作为一个例子,1展示了OPA333的EMIRR曲线。从曲线可注意到,当频率为1000MHz时该运放具有120dB的EMIRR。这是非常高的抑制水平,使得直接把该曲线与其它器件的曲线进行比较成为可能。

1

使用OPA333时EMIRR IN + 与频率相比较的例子

EMIRR曲线展示了运放被传导的抗RF信号(该信号被应用到非反相输入端)干扰能力的测定值。术语“被传导”是指该RF信号被直接应用到使用阻抗匹配型印刷电路板(PCB)的运放输入端。此外,还对放大器输入端的反射进行了表征和说明。

最后,用数字万用表测量由RF信号产生的DC偏移电压。请注意,在放大器和万用表之间使用了低通滤波器,以防止由穿过放大器的残余RF信号引起的潜在错误。2展示了用于表征EMIRR的测试电路。

2

用于表征EMIRR的测试电路

方程式(1)和(2)给出了EMIRR的数学定义。两个方程式互为彼此的重置版本。方程式(1)展示了所用RF信号和偏移电压的改变之间的关系。请注意所用RF信号的平方引起的偏移电压变化。这意味着入射RF信号较小幅度的增加可导致偏移电压的显著增加。还请注意,术语EMIRR的作用是减弱RF信号的影响;换句话说,较大的EMIRR(dB)可使偏移电压的变化大幅度减少。方程式(2)是在表征过程中用来计算EMIRR(dB)的方程形式。

其中

EMIRR(dB) —— 从被传导的RF信号处测定的电磁干扰抑制比(以dB为单位)被应用到非反相放大器的输入端

|△Vos| —— 是测定的偏移电压(由RF干扰引起)变化

VRF_PEAK —— 是应用到放大器非反相输入端的峰值RF干扰

最后,请注意许多其它因素,如PCB布局和屏蔽,也可影响用户系统的抗RF干扰能力。不过,一旦在用户的设计中优化了这些因素,使用具有良好EMIRR的放大器就可实现最佳性能。而且,用户无需进行任何复杂的计算。仅比较不同放大器的EMIRR曲线即可选择最适合用户应用的器件。笔者希望用户能利用EMIRR规范来优化用户系统抗RF信号干扰的能力。


(EETOP TI社区)


关注微信号eetop-1,回复以下关键词,阅读相关文章

MOS :

  • MOS器件的深度解析

  • MOS开关、互补开关、CMOS开关、传输门、马鞍曲线仿真方法

  • 浅谈MOSFET有多少种“击穿”?

  • 根据PDK仿真得到MOSEFET的手算参数(K,Vth)

  • 如何彻底读懂并理解MOSFET的Datasheet

  • MOS管为什么会有饱和区特性的一个解

  • 看懂MOSFET数据表,第1部分—UIS/雪崩额定值

IGBT :

  • IGBT的设计及仿真验证(PPT)

  • 高铁跑那么快 是怎么供电的呢?

电源

  • 选择 LDO 的方法

  • LDO的ESR

  • 电流型BUCK传递函数(推导、分析)

  • 浅谈LDO和DC/DC电源的区别

  • 如何借助LDO提高降压转换器的轻负载效率

  • LDO在IoT中省电的两种方法

运放1  ,  运放2

  • 运放并联的可行性

  • 运放设计:开环思考闭环仿真

  • 输入偏置电流和失调电流

  • 运放参数详解和分析

等等。。。

回复如下关键词,查看 ADC 相关文章:
ADC01ADC精度(I):精度与分辨率是一回事吗?
ADC02:ADC精度(II):解释总不可调整误差
ADC0312bit 100MHz pipelined ADC设计(IC设计)
ADC04SAR ADC响应时间 vs. 市场营销: 有趣的类比
ADC05驱动 ADC:放大器还是平衡-非平衡变压器?
ADC06:ADC版图布线小结
ADC07:SAR ADC PCB布局布线:参考路径
ADC08:SAR ADC 的输入注意事项
ADC09:改善ADC系统电源抑制状况的四种方法
ADC10:超越第一奈奎斯特区域

回复如下关键词,查看 DAC 相关文章:
DAC01
  -  DAC基础知识连载-1. 开篇
DAC02   -  DAC基础知识连载-2.电阻串理论
DAC03   -  DAC基础知识连载-3.电阻器梯形结构
DAC04   -  DAC基础知识连载-4.追求完美
DAC05   -  DAC基础知识连载-5.静态规范与线性度
DAC06   -  DAC基础知识连载-6.这些干扰是怎么回事?
DAC07   -  DAC基础知识连载-7.消除干扰
DAC08   -  RF-DAC多频带发射器线性评估
DAC09   -  以DAC为例介绍SpectreVerilog数模混合电路仿真方法


业务联系请加个人微信号:jack_eetop 或 QQ:228265511

全力打造中国电子工程师微信第一品牌!

点击左下角阅读原文

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
EETOP千宝箱--电子工程师必备!
非常详细的ADC&DAC数据转换器基础知识讲座?(67页PPT)
关于ADC(DAC)的线性度(INL和DNL)
线性代数基础知识(一)
做射频IC是否需要模拟IC的基础
电子战:新的挑战、技术和要求
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服