打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
Bazinga | 弧长参数化

作者介绍:
加州大学圣塔芭芭拉分校数学物理专业






作者说明


这是一个小笔记,是为了整理Andrew Pressley的Elementary Differential Geometry中的1.3小节,个人感觉作者叙述的有点凌乱。该文章仍然是备份作用,读者不必当真。





整理笔记


In the contents below, 
 is the arc length of the parametrized curve 
 , given by
Notice that by the FTC we have 
Def 1. A parametrized curve 
 is a reparametrization of the parametrized curve 
 if there is a smooth map 
 with smooth inverse 
 such that
for all 
 . Notice that since 
 has a smooth inverse, 
 is also a reparametrization of 
 , given by
In particular, we are looking at the following commutative diagram:
Def 2. A curve 
 is called regular if 
 for all 
 A curve 
 is called unit-speed if 
 for all 
Clearly, not all curves 
 is unit-speed. It will be convenient to have a reparametrization 
 which is a unit-speed reparametrization (This will be useful when calculating curvatures and etc). If 
 is regular, we can always find a unit-speed reparametrization.
Intuition: Suppose we have 
 be a unit-speed reparametrization of 
 . Then what we want is that at time 
 , we have traveled exactly 
 units of arc length, making 
 Then suppose that 
 exists, we know that 
 This indicates that we should choose the reparametrization map to be 
Theorem. A parametrized curve has a unit-speed reparametrization if and only if it is regular.
Proof. Suppose the parametrized curve 
 has a unit speed reparametrization 
 , with reparametrization map 
 , then we have, by letting 
 , that 
 . Taking derivatives on both sides
 and we have 
The LHS is 1, so the RHS is also 1, in particular 
 for all 
 . Hence 
 is regular.
On the other hand, suppose 
 is regular. As above (......inverse function theorem arguments blah blah blah...), take 
 . Then
 gives 
Therefore,
Taking the norm, we have
 ,
since 
 This shows that
Q.E.D.

Remark. In the argument above, we have established the relation that
But we know that we can express 
 in terms of 
 . Since we have the relation
where 
 is written as a function of 
 , finding its inverse will express 
 in terms of 
 We have then 
 . Therefore, we can think of 
 as 
 and the above relation becomes
Usually, for short-hand notation we just write
 ,
where we are letting 
 be an independent variable now. Therefore, by taking derivatives with respect to 
 , we find that
This is the convention we will be using for the rest of the book (which often confuses people seeing it for the first time). Therefore, we shall say that 
 is a unit-speed parameter of the curve 
 , and what that implies is that
 ,
and we are really referring to the unit-speed reparametrization 
 However, if we view 
 as an independent variable, then the above relation is indeed true.

When we are finding the unit-speed reparamterization of a given curve, what we are really doing is to express 
 in terms of the arc length 
 and then 
 is then a unit-speed reparamterization. Let us now illustrate this with an example.
Example. Consider the curve
First, we find the arc length, we have that
and
Then we express 
 in terms of 
 , giving
Therefore, the unit speed reparametrization, which is really 
 , reads

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
新版人教版七年级上册英语单词默写版
Unit5 Nelson mandela
curve1605a
Elliptic Curve Cryptography: a gentle introduction
Доклад ?Состояние и перспективы развития судо...
7MBA翻译中可能遇到的较难的专有名词-英语时空-中国MBA论坛MBA论坛,...
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服