打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
分享,小白的LCC市电全桥逆变升压电路

上次用LC串联谐振做高压电源,遇到各种问题。在科创发贴求助后,得到@echo的回复提示关于高压变压器的要点,和适合使用的LCC拓扑结构。

同时,也发现个比较有意思的事。当小白们遇上各种不懂各种不理解,发各种白痴贴求助时,绝大数专业人士,都非常忙。

忙到仅仅只有时间对你各种行为一通臭骂,但没时间和精力去指导任何东西,或者解答或者指出你发出电路上的一点最基本的错误。

而那些不忙的高手,才会抽空针对问题做解答和提示。这种奇怪的现象……不知道该怎么说。

这几天只能靠自己这在电子学方面比金鱼大不了多少的脑容量,差不多把网络上不为多见的LCC论文全翻烂了,到现在基本弄明白LCC的原型

下面就以一个门外汉的角度来说正题了,如果说对了,请拍砖,如果说错了,也请拍砖。

注:所有的一切,全都是建立在没有示波器测试的前提下完成的。所以效率,精度等,是很让人担忧的。

从需求说起。小体积的逆变磁芯,如果追求大功率,那必不可少的就是需要提高电压,工作频率。比如我手头的UY30磁芯,参数如下图:

 从这技术参数图上,可以看出(不论吹牛有多严重,意思是不变的),就这么一个小小的磁芯,运行在250Khz频率下时,最大功率可以做到54.8千瓦……。

然而,这么高的频率,对于绝大数玩ZVS的朋友来说,是想都不敢想的。我所知道的ZVS,目前看来绝大数ZVS都工作在20K以下,功率再大点的4管,8管什么的,甚至是工作在几K的频率上。这么做,体积和成本上去了,但作用却呵呵了。要提高ZVS频率,在同等功率组件上,就只能减少电容和变压器初级线圈数(减少谐振电感,更容易导致磁芯更容易饱和而导至停振炸管)。这样,基本是牺牲输出功率和效率去换频率。这样做,其实根本没解决问题,反而是在追求事倍功半的结果。

相对于大功率和高电压来说,MOS管并不是一个合适的选择。这时候,能选的估计也只有IGBT了。

比如我手头的英飞凌FF100R12KS4,基本参数就是1.2KV的额定最高耐压值,100A的额定最高过流能力的IGBT半桥模块。这个模块的特点,就是最大能工作在40Khz的硬开关频率及150Khz的软开关频率上。而实际使用40K频率的硬开关时,发热已经是很严重了,稍带重一点点的负载,就能炸管。但软开关时,工作在它的上限150Khz频率上,目前带个10千瓦,依然不需要强制风冷。

所以在用IGBT为基础的电路上,要追求大功率小体积低损耗,就只能提高频率走软开关模式了。

而在软开关谐振上,有LC谐振(ZVS这类的),LLC谐振,LCC谐振等。这几种模式,在我的理解中,LC和LLC谐振,似乎更适合用于降压电路。

关于LCC,实际上并没有论文里写的那样神秘,所有的重点,无非在于开关频率,谐振电容,谐振电感之间的耦合。下图是LCC的标准原理图:

 

在这个图的基础上,输出端是有必要加装吸峰元件和空载保护元件的。吸峰电路的元件要求,基本可以根据自身设定硬件以及的工作频率,通过容抗计算器计算电抗来,再算电阻。大至是,比如103的两个瓷片电容串联,在153.4Khz频率下,电抗是207.5欧,然后用IGBT的输入电压(我的是313伏)除以电抗=1.5A电流,然后定义用多大电阻(这块有点随意性了)。如果不是很在意损耗,可以适当放大些。我自己做的,最高开关频率是IGBT模块的上限153.4Khz,C3和C4因为手头没有合适的,所以用的是30KV耐压的103瓷片电容(超级浪费),R1用的是30欧50瓦的黄金电阻。然后R2-R5,C5-C8,我目前都还没加。后期会为了保证IGBT的安全,还是会加上的。

至于Q1-Q4的栅极接哪里,估计很多照着电路图玩ZVS的朋友,都一头雾水。其实这个比较简单,有条件的用3846类的变频驱动,没条件的,弄个带图腾的SG3525驱动,加上四个1:1的隔离变压器后,分别接到Q1-Q4上。但要注意的接法是要接对脚。实在不行,上网去买个带图腾的SG3525驱动,设定好最低工作频率和死区,再买块单管的青岛款IGBT驱动板吧,价格都不贵。上面该有的全都有了,连吸峰电容都有了,而且也不会接错。

接下去,就是LCC的核心部份了。弄的好的话,整个电路都会工作在ZCZVS状态。弄得不好的话……就是各种烧钱。

关于LCC部份,基本上我所整理出来的就这么几个东西:

1.LCC的谐振频率,是由电容C1和L1共同决定的。而L1的实际值,是L1谐振电感值+变压器初级的漏感值。(网上有在线的LC谐振计算器)

所以,确定好了自己想要的频率以后,先要定义C1电容值。然后通过LC谐振计算器,算出L1所需要的电感值(说个基本的,定义好电容值后,要算出电抗值来,然后L1电感的电抗,要等于电容的电抗,不然电路无法工作在谐振状态)。

注:如果不知道应用公式的,也可以上网找现成的在线感抗容抗计算器。

接着,就是要先设计变压器。在做变压器初级和次级后,短接次级的输出线,用电桥或者LCR仪表去测变压器初级的漏感。然后再用所需要的L1值减去这个漏感值,就得到需要额外做的谐振电感值了。(到这一步,如果能把变压器的初级漏感值,直接做成谐振电感L1的电感值,都不需要额外再做个L1谐振电感了)

2.C1电容和C2电容的容量比例,是需要控制在3:1以内的。也就是说,用0.03uf的C1,那么就要用大于0.01,小于0.03的C2电容,不然电路无法工作在ZCZVS状态下。至于为什么,各种论文上都是这么说的,具体我也没再去绞脑汁了。

然后需要注意的是,C2的值并不是单纯的电容值,而是C2电容值+变压器分布电容(也叫寄生电容)的总合。(至于变压器分布电容如何算如何测,我是没办法,所以不误导谁了,能做到的就是用LCR去测静态的分布电容值,算个大概。反正知道C2只是作为储能电容,并不会参与有用的谐振就可以了)

3.关于工作频率和谐振频率之间的关系,有篇论文里直观的提到, 需要 “谐振频率 > 工作频率 > 0.5倍谐振频率”  的前提下,电路才能工作在ZCZVS状态下。但我看更多的实际应用案例中,都是选取的最低工作频率 > =谐振频率,所以,我也没去验证这个过程了,反正在没测试波形的前提下,设定工作频率为谐振频率的3倍,也一样活得好好的。后期如果遇到和这个相关的问题,再去研究吧。

接下来发发自己的电路参数:

驱动部份:3846调频驱动,设定的硬开关频率为1.8K-51.14K。ZCZVS模式下的软开关工作频率为3.16K-153.4K(最大频率都是IGBT工作频率的极限了)。50%占空比,死区设的有点大。

功率模块:一对2单元的英飞凌FF100R12KS4半桥IGBT模块组成的全桥,加了2个0.47uf的吸峰电容。全桥输出端并了组实际功耗150瓦的阻容负载,作为防空载和吸峰两重作用。(实际发现只要不是空载或者出问题了,50瓦的电阻是没任何温度的。估计补空载的情况下,负载非常非常小。)

LCC部份:C1=0.0811uf / 100K,80A谐振电容。C2=0.0295uf /100k,80A电容。变压器寄生电容值测试为18PF。L1空心电感值为77.7uh,变压器漏感值为42uh。实际LCC最大谐振频率为51.18Khz。变压器变压比为1:1(测试用的,正在重新做变压器中,预算要输出70kv,做到变压比1:240左右)。

电源:220V全桥整流成313V输入,再经变压器1:1隔离后,经全桥整流滤波测试能得到448V电压,也侧面证明LCC电路工作都是正常的。

以上电路,已经实现过的最大测试功率是7千瓦,没有出现各地方明显的发热情况。

所有的东西,都只是依靠一只万用表,一只LCR电容电感测试器完成的。对于效率,没法评价。不过,感觉自己在高压电源和电子这块,哪怕再仅仅只是个过客,也对示波器有迫切的需求了。

至于其它的进度,后续有新结果了再补充。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
并联谐振变压器的等值电路 图 并联谐振变压器的等值电路
零电压软开关(zvs)全桥变换器应用技术
DRSSTC最基础原理扫盲 | 科创高压局
详细解析电源滤波电容的选取与计算
串联谐振变频电源浅析
大牛多年研发电源问题汇总(受益匪浅)
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服