打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
诺奖得主Cell揭示细胞信号传导新机制。
人工智能学家

编辑推荐:

众所周知,细胞外的受体启动了这一信号传导过程,通知一些蛋白触发一系列级联事件导致所需的反应,随后一种脱敏机制使得细胞能够回到基线。然而,近年来这一过程显示出额外的复杂性,似乎挑战了基本假设,特别是关于这些信号在细胞内产生的机制和位置。现在,杜克大学的研究人员报告称,他们似乎解开了这个谜题。

生物通报道  杜克大学领导下的研究人员发现了有关细胞信号传导机制的一些新信息,在未来的某天可能会帮助指导开发出更特异的药物疗法。

多年来,已得到广泛确认的科学研究详细描述了在接收到来自激素、神经递质或药物的化学信号后,细胞改变功能这一机制的复杂性。

众所周知,细胞外的受体启动了这一信号传导过程,通知一些蛋白触发一系列级联事件导致所需的反应,随后一种脱敏机制使得细胞能够回到基线。

然而,近年来这一过程显示出额外的复杂性,似乎挑战了基本假设,特别是关于这些信号在细胞内产生的机制和位置。

现在,杜克大学的Robert Lefkowitz博士领导研究人员报告称,他们似乎解开了这个谜题。Lefkowitz现为杜克大学医学系教授、霍华德休斯医学研究所研究员,他因描绘出了一些细胞信号传导分子,及确定了诸如β受体阻滞剂和抗组胺药等治疗方法利用它们的科学基础,而分享了2012年的诺贝尔化学奖。

在发表于8月4日《细胞》(cell)杂志上的一项研究中,Lefkowitz与共同第一作者Alex R.B. Thomsen、Thomas J. Cahill III及同事们一起,描绘了称作为G蛋白偶联受体(GPCRs)的一类细胞表面受体激活细胞信号传导机制的一个新范式。

众所周知,定位在细胞膜上GPCRs通常可激活细胞内的G蛋白——这些分子开关将来自外部的信号传送到细胞内部,告知细胞如何发挥功能。

免费索取信号通路分析工具Cignal Reporter System相关资料

这一激活过程后,由结合GPCRs的β- arrestin领导的脱敏会阻止进一步激活G蛋白,在一个称作为内化或内吞作用的过程中将受体拉倒细胞内。最终这两个过程将会沉默受体信号,使得细胞功能恢复原状。

然而近年来,一些科学家们认识到甚至在已调动β- arrestin,将GPCRs内化到称作为核内体的细胞区室中去后,一些GPCRs仍然继续向G蛋白发送信号。

利用各种生物化学、生物物理和细胞方法,Lefkowitz研究小组描述了他们称作为“mega-plexes”的,从前未知的GPCRs受体超级结构的存在、功能及构造。

不同于典型的受体和β- arrestin结合,这些mega-plexes通过它们的核心区连接G蛋白,同时通过一个尾区连接β- arrestin。由于β- arrestin只与受体的尾部互作,受体的整个内表面暴露出来,使得受体能够持续激活G蛋白。

Lefkowitz研究小组描述了他们称作为“mega-plexes”的,从前未知的GPCRs受体超级结构的存在、功能及构造。

不同于典型的受体和β- arrestin结合,这些mega-plexes通过它们的核心区连接G蛋白,同时通过一个尾区连接β- arrestin。由于β- arrestin只与受体的尾部互作,受体的整个内表面暴露出来,使得受体能够持续激活G蛋白。

Lefkowitz 说:“这开启了一个崭新的领域,可利用它操控来自细胞内外部信号这种双重性来获得治疗利益。”

共同第一作者Thomsen说,以往的一些研究表明,当G蛋白信号来自不同的细胞区室时细胞会做出不同的反应。

“因此,如果未来开发出的一些药物能够在特异区室中调控信号,或许能够更好地治疗某些疾病而具有更少的副作用。这样的研究尚处于初始阶段,离临床应用还有数年之遥。”

G蛋白偶联受体对于人类视觉感知非常重要。视网膜细胞上的GPCR接受到光子信号,视蛋白通过光变构反应将电磁波(就是光线)转换为细胞信号,通过大脑解析后我们就能够‘看’了。来自上海中医药大学、凯斯西储大学、斯克里普斯研究所等机构的研究人员证实,协同作用的G蛋白偶联受体激动剂与拮抗剂可以阻止光感受器细胞退化。这一研究发现发布在2016年7月26日的Science Signaling杂志上(上海中医药大学发表Science Signaling新文章 )。

2015年3月,来自中国科学院上海药物研究所、美国国立卫生研究院、南加州大学等机构的研究人员,在G蛋白偶联受体(GPCR)研究领域取得重大研究突破,揭示出了人类P2Y1受体的三维结构,发现了这一受体具有两个完全不同的配体结构位点。这些重要的研究成果发表在Nature杂志上(中科院发表最新Nature文章 )。

GPCR是细胞表面的一种重要受体,介导细胞外信号的跨膜传递。GPCR识别信号之后,是怎样通过构象改变启动细胞内部应答的呢?EPFL的科学家们通过计算机建模,向人们展示了GPCR结构转变的详细过程。他们发现,GPCR内部会形成一个持续性的水通道,这一步骤是信号跨膜传递的关键。人们可以在此基础上,根据小分子干扰GPCR水通道的能力,筛选出更有效的治疗药物。相关论文发表在Nature Communications杂志上(Nature子刊:G蛋白偶联受体的关键一步)  来源:生物谷




【重磅】未来科技学院筹备成立,开讲前沿科技未来发展趋势


2016年7月,人工智能学家AIE实验室基于自身的研究成果和所拥有的顶级科学家资源,在科学院相关机构的支持下,筹备建立未来科技学院 (Futurology University)。

未来科技学院的使命和目标:将邀请国内和国际著名科学家、科技企业家讲授人工智能、互联网、脑科学、虚拟现实、机器人等领域的基本原理和未来发展趋势。未来科技学院的目标是研究前沿科技未来发展趋势,培养掌握未来科技动向的企业家和具有独立创新精神的未来科学家。

开始激动人心的学习之旅:无论您是企业家,投资人,还是青年学子,科技爱好者,如果您希望把握科技未来发展趋势,与世界著名科学家,科技企业家,风险投资家进行直接交流。欢迎您加入未来科技学院大家庭。


您可以扫描二维码,进入未来科技学院临时群,然后工作人员邀请您加入未来科技学院的免费学习群,开启前沿科技未来趋势的学习之旅。


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
Cell:新研究揭示β-arrestin作用机制
G蛋白偶联受体(GPCR)的偏向配体
阿片类药物P城环游记第四回
Cell Res| 孔炜/孙金鹏团队发现体内血管紧张素II受体AT1的偏好性拮抗剂COMP及其在抑制...
诺奖得主联合创办,成立即获1亿美元融资,初创称要开启GPCR下一个「黄金时代」
《细胞》2022年第10期论文汇总|大麻与心脏病+癌细胞抵抗T细胞+人类线粒体基因编辑+环状RNA疫苗+小鼠器官时空转录组图谱+
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服