打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
相对论

狭义相对论

狭义相对论是由爱因斯坦、洛仑兹和庞加莱等人创立的时空理论,是对牛顿时空观的拓展和修正。牛顿力学是狭义相对论在低速情况下的近似。

狭义相对性原理虽然把伽利略相对性 原理(力学相对性)推广到了整个物理领域,但并不包括非惯性 参考系。爱因斯坦把相对性原理推广到一切参考系,指出物理定律在一切参考系中都具有相同的数学形式,这就是 相对性原理。相对性原理是物理学最基本的 原理之一,它否定了“绝对参考系”(绝对空间)。在一个参考系中建立起来的物理定律,通过适当的 坐标变换,可以适用于任何参考系。相对性原理最初由 伽利略提出,当时的适用范围是 经典力学。爱因斯坦将其推广到包含力学和电磁学的整个经典物理学范围,后来更进一步将引力 现象也包含进来。

中文名:狭义相对论

外文名:special relativity

提出者:爱因斯坦、洛伦兹、庞加莱

提出时间:1905年

应用学科:物理

背景

伽利略变换与电磁学理论的不自洽

到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。

麦克尔逊寻找以太的实验

为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参考系(以太)成立。根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太)的速度;在相对于“以太”运动的参考系中,光速具有不同的数值。

实验的结果——零结果

但斐索实验和迈克耳孙-莫雷实验表明光速与参考系的运动无关。该实验结果否定了以太假说,表明相对性原理的正确性。洛伦兹把伽利略变换修改为洛伦兹变换,在洛伦兹变换下,麦克斯韦方程组具有相对性原理所要求的协变性。洛伦兹的假说解决了上述矛盾,但他不能对洛伦兹变换的物理本质做出合理的解释。随后数学家庞加莱猜测洛伦兹变换和时空性质有关。

爱因斯坦的狭义相对论

爱因斯坦意识到伽利略变换实际上是牛顿经典时空观的体现,如果承认“真空光速独立于参考系”这一实验事实为基本原理,可以建立起一种新的时空观(相对论时空观)。在这一时空观下,由相对性原理即可导出洛伦兹变换。1905年,爱因斯坦发表论文《论动体的电动力学》,建立狭义相对论,成功描述了在亚光速领域宏观物体的运动。

狭义相对论的基本原理

光速不变原理。

在所有惯性系中,真空中的光速都等于299 792 458 m/s(:真空磁导率,:真空介电常数),与光源运动无关。迈克耳孙-莫雷实验是其有力证明。

狭义相对性原理。

在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。

狭义相对论,是仅描述平直线性的时空(指没有引力的,即闵可夫斯基时空)的相对论理论。牛顿的时空观认为运动空间是平直非线性的时空,可以用一个三维的速度空间来描述;时间并不是独立于空间的单独一维,而是空间坐标的自变量。

狭义相对论同样认为空间和时间并不是相互独立的,而它们应该用一个统一的四维时空来描述,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直线性的,所以在其中就存在“全局惯性系”。狭义相对论将“真空中,光速为常数”作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛伦兹变换。

洛伦兹坐标变换

狭义相对论中,洛伦兹变换描述时空中两个惯性参考系的时间、空间坐标之间的变换关系的。它最早由洛伦兹从以太说推出,用以解决经典力学与经典电磁学间的矛盾(即迈克耳孙-莫雷实验的零结果)。后被爱因斯坦用于狭义相对论。

形式

当两个参考系s与s'在时刻t=0时重合,且s'相对s以速度v沿x轴正方向运动时,一个事件在s系的坐标(x,y,z,t)与在s'系的坐标(x',y',z',t')满足以下关系:

或使用矩阵乘法的形式,写作:

其中

,称为洛伦兹因子。

用张量表示方法可以简单的表示为

其中;

推导注意事项

洛伦兹变换要求t=0时,x=0,y=0,z=0,且相对速度仅有x分量。

时间膨胀(爱因斯坦延缓)

当物体运动时,它内部所有一切的物理化学变化反应都会变慢的这种假说,就是时间膨胀(简称时慢)。时慢假说认为等速运动的物体带在身上的时钟,用静系观察者的时钟去测量,不论运动方向,测量结果动钟都随着运动速度增加而变慢.

动系的时间膨胀率=洛伦兹因子,

爱因斯坦利用毕氏定理以及假设光速对任何相对等速运动的观察者都一样就推论出:

动钟计时值t'=静钟计时值t*洛伦兹因子

假如有一个绝对静止系,显然,我们就可以测得各种物体的绝对时慢。所以处于相对静止系的我们,所得之一切时慢之观测值,都是相对时慢的观测值。例如由洛伦兹变换的假说去推论,在动系的观察者就测量出静系的时间膨胀:t'=洛伦兹因子t,同时也测量出静系的长度缩收:x'=x/洛伦兹因子.

注意:这里假设的时间膨胀率,绝非只因为多普勒效应让时频变低的视值。假设的时间膨胀率只跟受测物的相对速度有关,与近接或远离的方向无关。远离的多普勒效应时频视值[Fr=(C/(C+V'))F]是变慢的,但近接的多普勒效应时频视值[Fa=(C/(C-V'))F]是变快的。按照爱因斯坦延缓假说,对静系观察者来说不论近接或远离,动系通过一段固定距离的时间都加长了.也就是说通过那段固定距离的动系速度V'被静系观察者计算成比较慢的V,慢率是洛伦兹因子,V=V'/洛伦兹因子.所以静系观察者所测出的多普勒效应被爱因斯坦延缓假说修改成为:Fr=(C/(C+(V'/洛伦兹因子)))F和Fa=(C/(C-(V'/洛伦兹因子)))F.

长度收缩(洛伦兹收缩)

洛伦兹收缩就是指当物体在运动时,在运动的那个轴向,会产生收缩。其收缩率,就是洛伦兹因子。其它轴向的长度,并不会有影响.

迈克耳孙-莫雷实验那种实验,就是洛伦兹收缩的最佳证明.

当然,被洛伦兹收缩的人事物本身,并不会察觉到被收缩了;从静系看来,动系上的观测者,就像拿着一根被收缩的尺,去测量被收缩的物体.

但是,因为绝对静止系不可得,所以我们仅能测得相对短缩。因为我们不知道自己设定的静止参考系,是否真的比我们要测的运动物体还要静止。

假如运动物体上面有个观测者,他又设定他的惯性系才是静止的,那我们就变成他的动系了。当他观测我们时,我们才是被收缩的一方,而他是正常的一方。

另外,洛伦兹收缩率,从移动电荷所产生的电场推迟的效应,也就可以推出来。

高速运动电荷产生的电场形变之等势面,因为电场传播不是无限快,所以必定会产生推迟,所以它向四周散发出的电场之等势面,就不再是正球面对称了。

同时的相对性

因为绝对静止系不可得,所以各惯性系的观测者,对于两事件发生,仅能作出是否相对同时的判断,而没有办法作出是否绝对同时的判断,除非两事件发生在同一时空点上。

当惯性系中的观测者,在对该系中的有距离之两钟,进行校时,他把同步讯号源放在两钟的正中央,同步脉波呈球面对称,半径光速扩展,当钟被同步波缘触及时,即归零(或重置在相同的计时初值),此时两钟的计时步调,即相对同步计时,有时也简称相对同时。

相对论质量

m0指绝对质量(及牛顿力学中的质量),m为相对论质量由公式可以看出,一个物质的速度v不可能到达或者超过光速,否则分母为一个虚数,不符合物理(光子没有质量,因此其速度可以达到光速)。而当v远远小于c时,m可以近似的等于m0,近似的符合牛顿力学。

相对论力学

在狭义相对论中牛顿第二定律F=ma并不成立,而下式却仍然成立

只不过在式中m不是恒量,所以根据d(uv)=udv+vdu,

由上式可见,加速度并不和力的方向一致,且随着速度逐渐趋向于光速,物体的质量趋向于无穷大,加速度趋向于零。

相对论能量

根据公式,运动时物体质量增大,同时运动时将会有动能,质量与动能均随速度增大而增大。

相对论下的动能公式,当速度为0,动能为0。为物体静止时的能量,而总能量=静止能量+动能,因此总能量.

相对论动量与能量

动量与能量是密切相关的。

广义相对论

阿尔伯特·爱因斯坦(1879.3.14-1955.4.18)是著名的德国犹太裔理论物理学家、思想家及哲学家。[1]因为“对理论物理的贡献,特别是发现了光电效应”而获得1921年诺贝尔物理学奖,现代物理学的开创者、奠基人,相对论——“质能关系”的创立者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。他创立了代表现代科学的相对论,为核能开发奠定了理论基础,在现代科学技术和他的深刻影响下与广泛应用等方面开创了现代科学新纪元,被公认为是自伽利略、牛顿以来最伟大的科学家、物理学家。1999年(己卯年)12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。

广义相对论是阿尔伯特·爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论把经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相联系,其联系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。广义相对论理论在天体物理学中有着非常重要的应用,它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。

中文名:广义相对论

别名:相对论

提出者:阿尔伯特·爱因斯坦

应用学科:现代物理学

外文名:General  Relativity

表达式:R_uv-1/2×R×g_uv=κ×T_u

提出时间:1916年

适用领域范围:引力场,时间膨胀,引力时间延迟效应,引力物理,天体物理学


从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。不过,仍然有一些问题未能解决,典型的即是如何把广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。

爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台(LIGO)这样的引力波观测计划的目标。此外,广义相对论还是现代宇宙学膨胀宇宙论的理论基础。

历史发展

1905年爱因斯坦发表狭义相对论后,他开始着眼于如何把引力纳入狭义相对论框架的思考。以一个处在自由落体状态的观察者的理想实验为出发点,他从1907年开始了长达八年的对引力的相对性理论的探索。在历经多次弯路和错误之后,他于1915年11月在普鲁士科学院上作了发言,其内容正是著名的爱因斯坦引力场方程。这个方程描述了处于时空中的物质是如何影响其周围的时空几何,并成为了爱因斯坦的广义相对论的核心。

爱因斯坦的引力场方程是一个二阶非线性偏微分方程组,数学上想要求得方程的解是一件非常困难的事。爱因斯坦运用了很多近似方法,从引力场方程得出了很多最初的预言。不过很快天才的天体物理学家卡尔·史瓦西就在1916年得到了引力场方程的第一个非平庸精确解——史瓦西度规,这个解是研究星体引力坍缩的最终阶段,即黑洞的理论基础。在同一年,把史瓦西几何扩展到带有电荷的质量的研究工作也开始进行,其最终结果就是雷斯勒-诺斯特朗姆度规,其对应的是带电荷的静态黑洞。1917年爱因斯坦把广义相对论理论应用于整个宇宙,开创了相对论宇宙学的研究领域。考虑到同时期的宇宙学研究中静态宇宙的学说仍被广为接受,爱因斯坦在他的引力场方程中添加了一个新的常数,这被称作宇宙常数项,以求得和当时的“观测”相符合。然而到了1929年,哈勃等人的观测表明宇宙处在膨胀状态,而相应的膨胀宇宙解早在1922年就已经由亚历山大·弗里德曼从他的弗里德曼方程(同样由爱因斯坦场方程推出)得到,这个膨胀宇宙解不需要任何附加的宇宙常数项。比利时牧师勒梅特应用这些解构造了宇宙大爆炸的最早模型,模型预言宇宙是从一个高温高致密状态演化来的。爱因斯坦其后承认添加宇宙常数项是他一生中犯下的最大错误。

在那个时代,广义相对论与其他物理理论相比仍保持了一种神秘感。由于它和狭义相对论相融洽,并能够解释很多牛顿引力无法解释的现象,显然它要优于牛顿理论。爱因斯坦本人在1915年证明了广义相对论是如何解释水星轨道的反常近日点进动的现象,其过程不需要任何附加参数(所谓“敷衍因子(英语:Fudgefactor)”)。另一个著名的实验验证是由亚瑟·爱丁顿爵士率领的探险队在非洲的普林西比岛观测到的日食时的光线在太阳引力场中的偏折,其偏折角度和广义相对论的预言完全相符(是牛顿理论预言的偏折角的两倍),这一发现随后被全球报纸竞相报导,一时间使爱因斯坦的理论名声赫赫。但是直到1960年至1975年间,广义相对论才真正进入了理论物理和天体物理主流研究的视野,这一时期被称作广义相对论的黄金时代。物理学家逐渐理解了黑洞的概念,并能够通过天体物理学的性质从类星体中识别黑洞。在太阳系内能够进行的更精确的广义相对论的实验验证进一步展示了广义相对论非凡的预言能力,而相对论宇宙学的预言也同样经受住了实验观测的检验。

基本假设

简单地说,广义相对论的两个基本原理是:

一,等效原理:引力与惯性力等效;

二,广义相对性原理:所有的物理定律在任何参考系中都取相同的形式。

理论内容

等效原理

等效原理:分为弱等效原理和强等效原理,弱等效原理认为引力质量和惯性质量是等同的。强等效原理认为,两个空间分别受到引力和与之等大的惯性力的作用,在这两个空间中从事一切实验,都得出同样的物理规律。现在有不少学者在从事等效原理的论证研究,但是至少能够做到的精度来看,未曾从实验上证明等效原理是破缺的。

几何基础

引力是时空局域几何性质的表现。虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、波尔约、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。非欧几何的一般数学理论是由高斯的学生黎曼发展出来的。所以也称为黎曼几何或曲面几何,在爱因斯坦发展出广义相对论之前,人们都认为非欧几何是无法应用到真实世界中来的。

在广义相对论中,引力的作用被“几何化”——即是说:狭义相对论的闵氏空间背景加上万有引力的物理图景在广义相对论中变成了黎曼空间背景下不受力(假设没有电磁等相互作用)的自由运动的物理图景,其动力学方程与自身质量无关而成为测地线方程:

而万有引力定律也代之以爱因斯坦场方程:

R_uv-1/2*R*g_uv=κ*T_uv

(Rμν-(1/2)gμνR=8GπTμν/(c*c*c*c)-gμν)

其中G为牛顿万有引力常数

该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。

加入宇宙学常数后的场方程为:

R_uv-1/2*R*g_uv+Λ*g_uv=κ*T_uv


研究应用

按照广义相对论,在局部惯性系内,不存在引力,一维时间和三维空间组成四维平坦的欧几里得空间;在任意参考系内,存在引力,引力引起时空弯曲,因而时空是四维弯曲的非欧黎曼空间。爱因斯坦找到了物质分布影响时空几何的引力场方程。时间空间的弯曲结构取决于物质能量密度、动量密度在时间空间中的分布,而时间空间的弯曲结构又反过来决定物体的运动轨道。在引力不强、时间空间弯曲很小情况下,广义相对论的预言同牛顿万有引力定律和牛顿运动定律的预言趋于一致;而引力较强、时间空间弯曲较大情况下,两者有区别。广义相对论提出以来,预言了水星近日点反常进动、光频引力红移、光线引力偏折以及雷达回波延迟,都被天文观测或实验所证实。近年来,关于脉冲双星的观测也提供了有关广义相对论预言存在引力波的有力证据。

广义相对论由于它被令人惊叹地证实以及其理论上的优美,很快得到人们的承认和赞赏。然而由于牛顿引力理论对于绝大部分引力现象已经足够精确,广义相对论只提供了一个极小的修正,人们在实用上并不需要它,因此,广义相对论建立以后的半个世纪,并没有受到充分重视,也没有得到迅速发展。到20世纪60年代,情况发生变化,发现强引力天体(中子星)和3K宇宙背景辐射,使广义相对论的研究蓬勃发展起来。广义相对论对于研究天体结构和演化以及宇宙的结构和演化具有重要意义。中子星的形成和结构、黑洞物理和黑洞探测、引力辐射理论和引力波探测、大爆炸宇宙学、量子引力以及大尺度时空的拓扑结构等问题的研究正在深入,广义相对论成为物理研究的重要理论基础。

物理应用

引力透镜

引力场中光线的偏折效应是一类新的天文现象的原因。当观测者与遥远的观测天体之间还存在有一个大质量天体,当观测天体的质量和相对距离合适时观测者会看到多个扭曲的天体成像,这种效应被称作引力透镜。受系统结构、尺寸和质量分布的影响,成像可以是多个,甚至可以形成被称作爱因斯坦环的圆环,或者圆环的一部分弧。最早的引力透镜效应是在1979年发现的,已经发现了超过一百个引力透镜。即使这些成像彼此非常接近以至于无法分辨——这种情形被称作微引力透镜——这种效应仍然可通过观测总光强变化测量到,很多微引力透镜也已经被发现。

引力波

艺术家的构想图:激光空间干涉引力波探测器LISA对脉冲双星的观测是间接证实引力波存在的有力证据(参见上文轨道衰减一节),然而对来自宇宙深处的引力波的直接观测始终未能实现,这也成为了相对论前沿研究的主要课题之一。已经有相当数量的地面引力波探测器投入运行,最著名的是GEO600、LIGO(包括三架激光干涉引力波探测器)、TAMA300和VIRGO;而美国和欧洲合作的空间激光干涉探测器LISA正处于开发阶段,其先行测试计划LISA探路者(LISAPathfinder)于2009年底之前正式发射升空。

对引力波的探测会在很大程度上扩展基于电磁波观测的传统观测天文学的视野,人们能够通过探测到的引力波信号了解到其波源的信息。这些从未被真正了解过的信息可能来自于黑洞、中子星或白矮星等致密星体,可能来自于某些超新星爆发,甚至可能来自宇宙诞生极早期的暴涨时代的某些烙印,例如假想的宇宙弦。

黑洞和其它

基于广义相对论理论的计算机模拟一颗恒星坍缩为黑洞并释放出引力波的过程广义相对论预言了黑洞的存在,即当一个星体足够致密时,其引力使得时空中的一块区域极端扭曲以至于光都无法逸出。在当前被广为接受的恒星演化模型中,一般认为大质量恒星演化的最终阶段的情形包括1.4倍左右太阳质量的恒星演化为中子星,而数倍至几十倍太阳质量的恒星演化为恒星质量黑洞。具有几百万倍至几十亿倍太阳质量的超大质量黑洞被认为定律性地存在于每个星系的中心,一般认为它们的存在对于星系及更大的宇宙尺度结构的形成具有重要作用。

在天文学上致密星体的最重要属性之一是它们能够极有效率地把引力能量转换为电磁辐射。恒星质量黑洞或超大质量黑洞对星际气体和尘埃的吸积过程被认为是某些非常明亮的天体的形成机制,著名且多样的例子包括星系尺度的活动星系核以及恒星尺度的微类星体。在某些特定场合下吸积过程会在这些天体中激发强度极强的相对论性喷流,这是一种喷射速度可接近光速的且方向性极强的高能等离子束。在对这些现象进行建立模型的过程中广义相对论都起到了关键作用,而实验观测也为支持黑洞的存在以及广义相对论做出的种种预言提供了有力证据。

黑洞也是引力波探测的重要目标之一:黑洞双星的合并过程可能会辐射出能够被地球上的探测器接收到的某些最强的引力波信号,并且在双星合并前的啁啾信号可以被当作一种“标准烛光”从而来推测合并时的距离,并进一步成为在大尺度上探测宇宙膨胀的一种手段。而恒星质量黑洞等小质量致密星体落入超大质量黑洞的这一过程所辐射的引力波能够直接并完整地还原超大质量黑洞周围的时空几何信息。

宇宙学

威尔金森微波各向异性探测器(WMAP)拍摄的全天微波背景辐射的温度涨落现代的宇宙模型是基于带有宇宙常数的爱因斯坦场方程建立的,宇宙常数的值对大尺度的宇宙动力学有着重要影响。

这个经修改的爱因斯坦场方程具有一个各向同性并均匀的解:弗里德曼-勒梅特-罗伯逊-沃尔克度规,在这个解的基础上物理学家建立了从一百四十亿年前炽热的大爆炸中演化而来的宇宙模型。只要能够把这个模型中为数不多的几个参数(例如宇宙的物质平均密度)通过天文观测加以确定,人们就能从进一步得到的实验数据检验这个模型的正确性。这个模型的很多预言都是成功的,这包括太初核合成时期形成的化学元素初始丰度、宇宙的大尺度结构以及早期的宇宙温度在留下的“回音”:宇宙微波背景辐射。

从天文学观测得到的宇宙膨胀速率可以进一步估算出宇宙中存在的物质总量,不过有关宇宙中物质的本性还是一个有待解决的问题。估计宇宙中大约有90%以上的物质都属于暗物质,它们具有质量(即参与引力相互作用),但不参与电磁相互作用,即它们无法(通过电磁波)直接观测到。在已知的粒子物理或其他什么理论的框架中还没有办法对这种物质做出令人满意的描述。另外,对遥远的超新星红移的观测以及对宇宙微波背景辐射的测量显示,宇宙的演化过程在很大程度上受宇宙常数值的影响,而正是宇宙常数的值决定了宇宙的加速膨胀。换句话说,宇宙的加速膨胀是由具有非通常意义下的状态方程的某种能量形式决定的,这种能量被称作暗能量,其本性也仍然不为所知。

在所谓暴涨模型中,宇宙曾在诞生的极早期(~10-33秒)经历了剧烈的加速膨胀过程。这个在于二十世纪八十年代提出的假说是由于某些令人困惑并且用经典宇宙学无法解释的观测结果而提出的,例如宇宙微波背景辐射的高度各向同性,而对微波背景辐射各向异性的观测结果是支持暴涨模型的证据之一。然而,暴涨的可能的方式也是多样的,现今的观测还无法对此作出约束。一个更大的课题是关于极早期宇宙的物理学的,这涉及到发生在暴涨之前的、由经典宇宙学模型预言的大爆炸奇点。


实验检验

水星近日点进动

1859年,天文学家勒威耶(LeVerrier)发现水星近日点进动的观测值,比根据牛顿定律计算的理论值每百年快38角秒。他猜想可能在水星以内还有一颗小行星,这颗小行星对水星的引力导致两者的偏差。可是经过多年的搜索,始终没有找到这颗小行星。1882年,纽康姆(S.Newcomb)经过重新计算,得出水星近日点的多余进动值为每百年43角秒。他提出,有可能是水星因发出黄道光的弥漫物质使水星的运动受到阻力。但这又不能解释为什么其他几颗悬浮在空间中的静止粒子排列成的环行星也有类似的多余进动。纽康姆于是怀疑引力是否服从平方反比定律。后来还有人用电磁理论来解释水星近日点进动的反常现象,都未获成功。

1915年,爱因斯坦根据广义相对论把行星的绕日运动看成是它在太阳引力场中的运动,由于太阳的质量造成周围空间发生弯曲,使行星每公转一周近日点进动为:

ε=24π2a2/T2c2(1-e2)

其中a为行星轨道的长半轴,c为光速,以cm/s表示,e为偏心率,T为公转周期。对于水星,计算出ε=43″/百年,正好与纽康姆的结果相符,一举解决了牛顿引力理论多年未解决的悬案。这个结果当时成了广义相对论最有力的一个证据。水星是最接近太阳的内行星。离中心天体越近,引力场越强,时空弯曲的曲率就越大。再加上水星运动轨道的偏心率较大,所以进动的修正值也比其他行星为大。后来测到的金星,地球和小行星伊卡鲁斯的多余进动跟理论计算也都基本相符。

光线在引力场中的弯曲

1911年爱因斯坦在《引力对光传播的影响》一文中讨论了光线经过太阳附近时由于太阳引力的作用会产生弯曲。他推算出偏角为0.83″,并且指出这一现象可以在日全食进行观测。1914年德国天文学家弗劳德(E.F.Freundlich)领队去克里木半岛准备对当年八月间的日全食进行观测,正遇上第一次世界大战爆发,观测未能进行。幸亏这样,因为爱因斯坦当时只考虑到等价原理,计算结果小了一半。1916年爱因斯坦根据完整的广义相对论对光线在引力场中的弯曲重新作了计算。他不仅考虑到太阳引力的作用,还考虑到太阳质量导致空间几何形变,光线的偏角为:α=1″.75R0/r,其中R0为太阳半径,r为光线到太阳中心的距离。

1919年日全食期间,英国皇家学会和英国皇家天文学会派出了由爱丁顿(A.S.Eddington)等人率领的两支观测队分赴西非几内亚湾的普林西比岛(Principe)和巴西的索布腊儿尔(Sobral)两地观测。经过比较,两地的观测结果分别为1″.61±0″.30和1″.98±0″.12。把当时测到的偏角数据跟爱因斯坦的理论预期比较,基本相符。这种观测精度太低,而且还会受到其他因素的干扰。人们一直在找日全食以外的可能。20世纪60年代发展起来的射电天文学带来了希望。用射电望远镜发现了类星射电源。1974年和1975年对类星体观测的结果,理论和观测值的偏差不超过百分之一。

光谱线的引力红移

广义相对论指出,在强引力场中时钟要走得慢些,因此从巨大质量的星体表面发射到地球上的光线,会向光谱的红端移动。爱因斯坦1911年在《引力对光传播的影响》一文中就讨论了这个问题。他以Φ表示太阳表面与地球之间的引力势差,ν0、ν分别表示光线在太阳表面和到达地球时的频率,得:

(ν0-ν)/ν=-Φ/c2=2×10-6.

爱因斯坦指出,这一结果与法布里(C.Fabry)等人的观测相符,而法布里当时原来还以为是其它原因的影响。

1925年,美国威尔逊山天文台的亚当斯(W.S.Adams)观测了天狼星的伴星天狼A。这颗伴星是所谓的白矮星,其密度比铂大二千倍。观测它发出的谱线,得到的频移与广义相对论的预期基本相符。

1958年,穆斯堡尔效应得到发现。用这个效应可以测到分辨率极高的r射线共振吸收。1959年,庞德(R.V.Pound)和雷布卡(G.Rebka)首先提出了运用穆斯堡尔效应检测引力频移的方案。接着,他们成功地进行了实验,得到的结果与理论值相差约百分之五。

用原子钟测引力频移也能得到很好的结果。1971年,海菲勒(J.C.Hafele)和凯丁(R.E.Keating)用几台铯原子钟比较不同高度的计时率,其中有一台置于地面作为参考钟,另外几台由民航机携带登空,在1万米高空沿赤道环绕地球飞行。实验结果与理论预期值在10%内相符。1980年魏索特(R.F.C.Vessot)等人用氢原子钟做实验。他们把氢原子钟用火箭发射至一万公里太空,得到的结果与理论值相差只有±7×10^-5。

雷达回波延迟

光线经过大质量物体附近的弯曲现象可以看成是一种折射,相当于光速减慢,因此从空间某一点发出的信号,如果途经太阳附近,到达地球的时间会有所延迟。1964年,夏皮罗(I.I.Shapiro)首先提出这个建议。他的小组先后对水星、金星与火星进行了雷达实验,证明雷达回波确有延迟现象。开始有人用人造天体作为反射靶,实验精度有所改善。这类实验所得结果与广义相对论理论值比较,相差大约1%。用天文学观测检验广义相对论的事例还有许多。例如:引力波的观测和双星观测,有关宇宙膨胀的哈勃定律,黑洞的发现,中子星的发现,微波背景辐射的发现等等。通过各种实验检验,广义相对论越来越令人信服。然而,有一点应该特别强调:可以用一个实验否定某个理论,却不能用有限数量的实验最终证明一个理论;一个精确度并不很高的实验也许就可以推翻某个理论,却无法用精确度很高的一系列实验最终肯定一个理论。对于广义相对论的是否正确,人们必须采取非常谨慎的态度,严格而小心地作出合理的结论。

进阶概念

因果结构和全局几何

一个无限的静态闵可夫斯基宇宙的彭罗斯图在广义相对论中没有任何有静止质量的物体能够追上或超过一束光脉冲,即是说发生于某一点的事件A在光从那一点传播到空间中任意位置X之前无法对位置X产生影响。因此,一个时空中所有光的世界线(零性测地线)包含了有关这个时空的关键因果结构信息。描述这种因果结构的是彭罗斯-卡特图,在这种图中无限大的空间区域和时间间隔通过共形变换被“收缩”(数学上称为紧化)在可被容纳的有限时空区域内,而光的世界线仍然和在闵可夫斯基图中一样用对角线表示。

彭罗斯和其他研究者注意到因果结构的重要性,从而发展了所谓全局几何。全局几何中研究的对象不再是爱因斯坦场方程的一个个特定解(或一族解),而是运用一些对所有测地线都成立的关系,如Raychaudhuri方程,以及对物质本性的非特异性假设(通常用所谓能量条件的形式来表述)来推导普适性结论。

视界

在全局几何下可以证明有些时空中存在被称作视界的分界线,它们把时空中的一部分区域隔离起来。这样的最著名例子是黑洞:当质量被压缩到空间中的一块足够小的区域中后(相关长度为史瓦西半径),没有光子能从内部逸出。而由于任何有质量的粒子速度都无法超过光速,黑洞内部的物质也被封闭在视界内。不过,从视界之外到视界之内的通道依然是存在的,这表明黑洞的视界作为一种分界线并不是物理性质的屏障。

一个旋转黑洞的能层,在从旋转黑洞抽取能量的过程中扮演着重要角色早期的黑洞研究主要依赖于求得爱因斯坦场方程的精确解,著名的解包括球对称的史瓦西解(用来描述静态黑洞)和反对称的克尔解(用来描述旋转定态黑洞,并由此引入了能层等有趣的属性)。而后来的研究通过全局几何揭示了更多的关于黑洞的普适性质:研究表明经过一段相当长的时间后黑洞都逐渐演化为一类相当简单的可用十一个参数来确定的星体,包括能量、动量、角动量、某一时刻的位置和所带电荷。这一性质可归纳为黑洞的唯一性定理:“黑洞没有毛发”,即黑洞没有像人类的不同发型那样的不同标记。例如,星体经过引力坍缩形成黑洞的过程非常复杂,但最终形成的黑洞的属性却相当简单。

更值得一提的是黑洞研究已经得到了一组制约黑洞行为的一般性定律,这被称作黑洞(热)力学,这些定律与热力学定律有很强的类比关系。例如根据黑洞力学的第二定律,一个黑洞的视界面积永不会自发地随着时间而减少,这类似于一个热力学系统的熵;这个定律也决定了通过经典方法(例如,彭罗斯过程)不可能从一个旋转黑洞中无限度地抽取能量。这些都强烈暗示了黑洞力学定律实际是热力学定律的一个子集,而黑洞的表面积和它的熵成正比。从这个假设可以进一步修正黑洞力学定律。例如,由于黑洞力学第二定律是热力学第二定律的一部分,则可知黑洞的表面积也有可能减小,只要有某种其它过程来保证系统的总熵是增加的。而热力学第三定律认为不存在温度为绝对零度的物体,可以进一步推知黑洞应该也存在热辐射;半经典理论计算表明它们确实存在有热辐射,在这个机制中黑洞的表面引力充当着普朗克黑体辐射定律中温度的角色,这种辐射称作霍金辐射(参见下文量子理论一节)。

广义相对论还预言了其他类型的视界模型:在一个膨胀宇宙中,观察者可能会发现过去的某些区域不能被观测(所谓“粒子视界”),而未来的某些区域不能被影响(事件视界)。即使是在平直的闵可夫斯基时空中,当观察者处于一个加速的参考系时也会存在视界,这些视界也会伴随有半经典理论中的盎鲁辐射。

奇点

广义相对论的另一个普遍却又令人困扰的特色问题是时空的分界线——奇点的出现。时空可以通过沿着类时和类光的测地线来探索,这些路径是光子及其他所有粒子在自由落体运动中的可能轨迹,但爱因斯坦场方程的某些解具有“粗糙的边缘”——这被称作时空奇点,这些奇点上类时或类光的测地线会突然中止,而对于这些奇点没有定义好的时空几何来描述。需要说明的是,“奇点”往往可能并不是一个“点”:那些场方程的解的“粗糙边缘”在既有坐标系下,不仅可能是一个“点”,还可以以其他几何形式出现(比如克尔黑洞的“奇环”等)。一般意义上的奇点是指曲率奇点,这是说在这些点上描述时空曲率的几何量,例如里奇张量为无限大(曲率奇点是相对所谓坐标奇点而言的,坐标奇点本质上不属于奇点的范畴:有些度规在某个特定坐标下会产生无穷大,但本质上这些点不具有奇性,在其他合适的坐标下是光滑的,也不会产生无穷大的曲率张量)。描述未来的奇点(世界线的终结)的著名例子包括永远静态的史瓦西黑洞内部的奇点,以及永远旋转的克尔黑洞内部的环状奇点。弗里德曼-勒梅特-罗伯逊-沃尔克度规,以及其他描述宇宙的时空几何都具有过去的奇点(世界线的开端),这被称作大爆炸奇点,而有些还具有未来的奇点(大挤压)。

考虑到这些模型都是高度对称从而被简化的,人们很容易去猜测奇点的出现是否只是理想状态下的不自然产物。然而著名的由全局几何证明的奇点定理指出,奇点是广义相对论的一个普遍特色结果,并且任何有质量的实体发生引力坍缩并达到一个特定阶段后都会形成奇点,而在一系列膨胀宇宙模型中也一样存在奇点。不过奇点定理的内容基本没有涉及到奇点的性质,这些关于确定奇点的一般结构(例如所谓BKL假说)的问题是当前相关研究的主要课题。另一方面,由于在对于物理规律的破坏方面而言,一个被包裹于视界之中的奇点被认为要好过一个“裸”的奇点,故而宇宙监督假说被提出,它认为所有未来的实际奇点(即没有完美对称性的具有实际性质的物体形成的奇点)都会被藏在视界之内,从而对外面对观察者不可见,即自然界憎恨裸奇点。尽管还没有实际证据证明这一点,有数值模拟的结果支持这一假说的正确性。

演化方程

每一个爱因斯坦场方程的解都是一个宇宙,这里的宇宙含义既包括了整个空间,也包括了过去与未来——它们并不单单是反映某些事物的“快照”,而是所描述的时空的完全写真。每一个解在其专属的特定宇宙中都能描述任意时间和任意位置的时空几何和物质状态。出于这个表征,爱因斯坦的理论看上去与其他大多数物理理论有所不同:大多数物理理论都需要指明一个物理系统的演化方程(例如量子力学中的埃伦费斯特定理),即如果一个物理系统在给定时刻的状态已知,其演化方程能够允许描述系统在过去和未来的状态。爱因斯坦理论中的引力场和其他场的更多区别还在于前者是自身相互作用的(是指它在没有其他场出现时仍然还是非线性的),并且不具有固定的背景结构(在宇宙尺度上会发生演化)。

为了更好地理解爱因斯坦场方程这个与时间有关的偏微分方程,可以把它写成某种能够描述宇宙随时间演化的形式。这种形式被称作“3+1”分解,其中时空被分为三维空间和一维时间。最著名的形式叫做ADM形式,在这种分解下广义相对论的时空演化方程具有良好的性质:在适当的初始条件给定的情形下方程有解并且是唯一的。场方程的“3+1”分解形式是数值相对论的研究基础。

全局和准局部量

演化方程的观念与广义相对论性物理中的另一个方面紧密联系:在爱因斯坦的理论中,一个系统的总质量(或能量)这个看似简单的概念无法找到一种普遍性的定义。其原因在于,引力场原则上并不像其他的场那样具有可以局部化的能量。

尽管如此,试图通过其他途径来定义一个系统的总质量还是可能的,在经典物理中,质量(或能量)的定义可以来自时间平移不变性的守恒量,或是通过系统的哈密顿形式。在广义相对论中,从这两种途径出发可以分别得到如下质量的定义:

*柯玛质量:从类时的Killing矢量出发通过柯玛积分得到的在时间平移不变性下的守恒量,表现为一个静态时空的总能量;

*ADM质量:在一个渐近平直时空中建立广义相对论的哈密顿形式,从中定义系统的总能量。

如果把一个系统的总质量中被引力波携带至无限远处的能量除去,得到的结果叫做零性无限远处的邦迪质量。这些定义而来的质量被舍恩和丘成桐的正质量定理证明是正值,而动量和角动量也具有全局的相应定义。在这方面的研究中还有很多试图建立所谓准局部量的尝试,例如仅通过一个孤立系统所在的有限空间区域中包含的物理量来构造这个孤立系统的质量。这类尝试寄希望于能够找到一个更好地描述孤立系统的量化方式,例如环假说的某种更精确的形式。

量子理论

如果说广义相对论是现代物理学的两大支柱之一,那么量子理论作为借此了解基本粒子以及凝聚态物理的基础理论就是现代物理的另一支柱。然而,如何把量子理论中的概念应用到广义相对论的框架中仍然是一个未能解决的问题。

弯曲时空中的量子场论

作为现代物理中粒子物理学的基础,通常意义上的量子场论是建立在平直的闵可夫斯基时空中的,这对于处在像地球这样的弱引力场中的微观粒子的描述而言是一个非常好的近似。而在某些情形中,引力场的强度足以影响到其中的量子化的物质但不足以要求引力场本身也被量子化,为此物理学家发展了弯曲时空中的量子场论。这些理论借助于经典的广义相对论来描述弯曲的背景时空,并定义了广义化的弯曲时空中的量子场理论。通过这种理论,可以证明黑洞也在通过黑体辐射释放出粒子,这即是霍金辐射,并有可能通过这种机制导致黑洞最终蒸发。

量子引力

物质的量子化描述和时空的几何化描述之间彼此不具有相容性,以及广义相对论中时空曲率无限大(意味着其结构成为微观尺度)的奇点的出现,这些都要求着一个完整的量子引力理论的建立。这个理论需要能够对黑洞内部以及极早期宇宙的情形做出充分的描述,而其中的引力和相关的时空几何需要用量子化的语言来叙述。尽管物理学家为此做出了很多努力,并有多个有潜质的候选理论已经发展起来,人类还没能得到一个称得上完整并自洽的量子引力理论。

量子场论作为粒子物理的基础已经能够描述除引力外的其余三种基本相互作用,但试图把引力概括到量子场论的框架中的尝试却遇到了严重的问题。在低能区域这种尝试取得了成功,其结果是一个可被接受的引力的有效(量子)场理论,但在高能区域得到的模型是发散的(不可重整化)。

试图克服这些限制的尝试性理论之一是弦论,在这种量子理论中研究的最基本单位不再是点状粒子,而是一维的弦。弦论有可能成为能够描述所有粒子和包括引力在内的基本相互作用的大统一理论,其代价是导致了在三维空间的基础上生成六维的额外维度等反常特性。在所谓第二次超弦革命中,人们猜测超弦理论,以及广义相对论与超对称的统一即所谓超引力,能够构成一个猜想的十一维模型的一部分,这种模型叫做M理论,它被认为能够建立一个具有唯一性定义且自洽的量子引力理论。

另外一种尝试来自于量子理论中的正则量子化方法。应用广义相对论的初值形式(参见上文演化方程一节),其结果是惠勒-得卫特方程(其作用类似于薛定谔方程)。虽然这个方程在一般情形下定义并不完备,但在所谓阿西特卡变量的引入下,从这个方程能够得到一个很有前途的模型:圈量子引力。在这个理论中空间是一种被称作自旋网络的网状结构,并在离散的时间中演化。

取决于广义相对论和量子理论中的哪些性质可以被接受保留,并在什么能量量级上需要引入变化,对量子引力的尝试理论还有很多,例如动力三角剖分、因果组合、扭量理论以及基于路径积分的量子宇宙学模型。

所有这些尝试性候选理论都仍有形式上和概念上的主要问题需要解决,而且它们都在面临一个共同的问题,还没有办法从实验上验证量子引力理论的预言,进而无法通过多个理论之间某些预言的不同来判别其正确性。在这个意义上,量子引力的实验观测还需要寄希望于未来的宇宙学观测以及相关的粒子物理实验逐渐成为可能。

发展情况

在引力和宇宙学的研究中,广义相对论已经成为了一个高度成功的模型,已经通过了每一次意义明确的观测和实验的检验。然而即便如此,仍然有证据显示这个理论并不是那么完善的:对量子引力的寻求以及时空奇点的现实性问题依然有待解决;实验观测得到的支持暗物质和暗能量存在的数据结果也在暗暗呼唤着一种新物理学的建立;而从先驱者号观测到的反常效应也许可以用已知的理论来解释,也许则真的是一种新物理学来临的预告。不过,广义相对论之中仍然充满了值得探索的可能性:数学相对论学家正在寻求理解奇点的本性,以及爱因斯坦场方程的基本属性;不断更新的电脑正在进行黑洞合并等更多的数值模拟;而第一次直接观测到引力波的竞赛也正在前进中,人类希望借此能够在达到的强得多的引力场中创造更多检验这个理论的正确性的机会。在爱因斯坦发表他的理论九十多年之后,广义相对论依然是一个高度活跃的研究领域。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
爱因斯坦相对论是如何改变世界的
除了黑洞,爱因斯坦的理论还有哪些预言?
爱因斯坦的相对论是如何被验证的?到现在全部获得验证了吗?
当代物理批判(三十九)
时空穿越,是我们的美好幻想吗
科学家发现五维黑洞可产生“裸奇点”
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服