打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
3KW家用光伏设计案例


 

项目信息

本项目所在地红安县位于湖北省东北部大别山南麓,东邻黄冈麻城,西接孝感大悟,南临武汉黄陂,北接河南信阳,县城距省会武汉80公里。地跨东经114°23′—114°49′,北纬30°56′—31°35′之间。全县国土总面积为1796平方公里,辖12个乡镇场,396个行政村,人口66.36万人,其中农村人口52.9万人,城镇人口13.46万。

 


红安县地势北高南低,海拔高度一般为200米。县东北部为山区,坡度15°—40°,最高点为县北的老君山,海拔840.5米。县境最低处是南部的太平桥镇与新洲县交界的倒水河畔杜家湾,海拔仅30米。

红安县南部多丘陵,坡度5°—20°。全县河谷平原少,为半山半丘陵地区。属亚热带季风气候,年平均气温为15.7℃,最高气温为41.5℃,最低气温为-14.5℃。全县无霜期平均为236.4;全县年平降水量为1116.2毫米,夏季降雨量占年总雨量的一半,年平降雪日为8.3天,年平相对湿度77%,年平均风力3级。年均总日照为1998.8小时,占可照时数45%,属于太阳能资源三类可利用地区。

 

光伏系统设计

1.光伏组件选型

本项目选用260P-60多晶硅太阳电池组件产品,额定功率260Wp。其主要性能参数如下表所示:

 


1.选用的光伏组件产品参数

 


2.光伏并网逆变器选型

根据本项目业主为居民分布式,电网入户电压为AC220V,故选用单相光伏逆变器。其主要性能参数如下表所示:

 


3.站址的选择

对于居民及家用分布式光伏发电系统而言,其站址一般选在居民屋顶或空旷地面之上,故在此暂不考虑大范围上的自然条件(太阳辐射量、地理位置、交通条件、水源)和接入电网条件(接入点的距离、接入点的间隔等)

 

环境影响更能直接影响到居民及家用分布式光伏发电系统的选址,其关键要素如下:

A. 有无遮光的障碍物(包括远期与近期的遮挡)

B. 盐害、公害的有无

C. 冬季的积雪、结冰、雷击等灾害

 


 本案安装在业主屋顶,周围无高大建筑物,在设计布局时无需对此进行阴影分析。

 

4.光伏最佳方阵倾斜角与方位

为了保证本项目收益最大化,并且也为了组件安装简便与效果美观,通过专业光伏模拟软件分析得出,此地的最佳太阳能倾斜角度为26度,及朝正南向倾斜26度安装。这样可保证系统发电量在全年周期中的最大化。

 

另考虑到光伏支架强度、系统成本、屋顶面积利用率等因素。在保证系统发电量降低不明显的情况下(降低不超过1%)尽可能降低光伏方阵倾斜角度,以减少受风面做到增加支架强度,减少支架成本、提高有限场地面积的利用率。

 

经分析得出,本项目建议倾斜角约为17度左右(屋面正南面倾斜角度)

 

5.光伏方阵前后最佳间距设计

为了追求太阳能发电系统全年的最佳发电量并尽可能的提高屋面利用率,我们在此要求在冬至日(每年的1222日或1223)当天9:0015:00,光伏方阵列不会互相遮挡,此时的前后间距即为最佳间距。

 

经专业PV软件模拟可知,光伏方阵倾斜角度17度,组件阵列与阵列间最低点间距保持在5M,冬至日当天9:0015:00,光伏方阵列基本不会互相遮挡。

 

6.光伏方阵串并联设计

分布式光伏发电系统中太阳能电池组件电路相互串联组成串联支路。

 

串联接线用于提升集电系统直流电压至逆变器电压输入范围,应保证太阳能电池组件在各种太阳辐射照度和各种环境温度工况下都不超出逆变器电压输入范围。

 

考虑到适用于晶体硅电池的逆变器最大直流电压(最大阵列开路电压)550V,最大功率电压跟踪范围为70~550V,MPPT路数为1/1并。

 

对于本项目选用12260W多晶硅太阳电池组件,每个太阳电池组件额定工作电压为31.2V,开路电压为38V,串联支路太阳电池数量初步确定为12个。

 

在环境温度为25±2℃、太阳辐射照度为1000W/m2的额定工况下,12个太阳电池串联的串联支路额定工作电压为374.4V,开路电压456V,均在逆变器允许输入范围内,可确保正常工作。

 

在工况变化时考虑在平均极端环境温度为-10℃时,太阳能电池组件串的最大功率点工作电压为12×31.2×(0.35%×35+1)=420.3V,满足550V最高满载MPPT点的输入电压要求;

在极端最高环境温度为42℃时,太阳能电池组件的工作电压为12×31.2×(-0.35%×17+1)=352.1V,满足70V最低MPPT点的输入电压要求。考虑系统电压线损为2%,可以看出上述方案完全满足使用要求。

经上述校核,确定串联支路太阳电池数量为12

 

7.电气系统设计

根据光伏组件选型、光伏并网逆变器选型、光伏方阵串并联设计等,结合业主低压接入情况,对本案光伏发电进行电气系统设计,如下图所示:

 

图:系统电气一次

 

8.防雷接地设计

太阳能光伏并网发电系统的基本组成为:太阳电池方阵、光伏汇流箱、箱变和逆变器等。太阳电池方阵的支架采用金属材料并占用较大空间且一般放置在开阔地,在雷暴发生时,尤其容易受到雷击而毁坏,并且太阳电池组件和逆变器比较昂贵,为避免因雷击和浪涌而造成经济损失,有效的防雷和电涌保护是必不可少的。太阳能光伏并网电站防雷的主要措施有:


 外部防雷装置主要是避雷针、避雷带和避雷网等,通过这些装置可以减小雷电流流入建筑物内部产生的空间电磁场,以保护建筑物和构筑物的安全。太阳能光伏发电设备和建筑的接地系统通过镀锌钢相互连接,在焊接处也要进行防腐防锈处理,这样既可以减小总接地电阻又可以通过相互网状交织连接的接地系统可形成一个等电位面,显著减小雷电作用在各地线之间所产生的过电压。

 

水平接地极铺设在至少 0.5m 深的土壤中(距离冻土层深 0.5m )使用十字夹相互连接成网格状。同样,在土壤中的连接头必须用耐腐蚀带包裹起来。

 

针对本案光伏发电系统,防雷设计包括外部防雷装置(接地引下线)和内部防雷装置(浪涌保护),如下图所示:

 


9.防雷设计说明:

外部防雷:将露天安装的光伏方阵构件(方阵支架、组件等金属外壳部件)利用接地水平接地极与屋顶原有防雷带有效连接。

 

内部防雷:将光伏并网逆变器交流输出端,零线、火线与地线之间加装Ⅱ级浪涌保护器,浪涌保护器接地端利用接地水平接地极与接地网(原有或新建)有效连接。

 

10.光伏供电系统发电量统计

考虑到光伏组件功率的衰减,未来25年发电量预计:



本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
1.6MW太阳能光伏发电站设计
清大奥普光伏能源怀柔彩钢瓦屋顶10KW光伏并网发电项目
农村太阳能路灯设计与安装要点
太阳能监控系统详解,看完就会施工安装
光伏发电系统计算方法
学习指南 | 64个分布式光伏电站常见问题答疑!
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服