打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
pandas 基础操作 更新
import pandas as pdimport numpy as np
import matplotlib.pyplot as plt

创建一个Series,同时让pandas自动生成索引列

s = pd.Series([1,3,5,np.nan,6,8])
# 查看ss
0 1.01 3.02 5.03 NaN4 6.05 8.0dtype: float64

创建一个DataFrame数据框

### 创建一个DataFrame ,可以传入一个numpy array 可以自己构建索引以及列标dates = pd.date_range('2018-11-01',periods=7)#### 比如说生成一个时间序列,以20181101 为起始位置的,7个日期组成的时间序列,数据的类型为datetime64[ns]
dates
DatetimeIndex(['2018-11-01', '2018-11-02', '2018-11-03', '2018-11-04', '2018-11-05', '2018-11-06', '2018-11-07'], dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(7,4),index= dates,columns=list('ABCD'))df# 产生随机正态分布的数据,7行4列,分别对应的index的长度以及column的长度
A B C D
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-03 -0.518426 0.730866 -1.033830 0.712624
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
2018-11-06 -0.030580 0.545561 1.091127 -0.131579
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
### 同时用可以使用dict的实行创建DataFramedf2 = pd.DataFrame({'A':1, 'B':'20181101', 'C':np.array([3]*4,dtype='int32'), 'D':pd.Categorical(['test','train','test','train']), 'E':1.5}, )df2
A B C D E
0 1 20181101 3 test 1.5
1 1 20181101 3 train 1.5
2 1 20181101 3 test 1.5
3 1 20181101 3 train 1.5
df2.dtypes### 查看数据框中的数据类型,常见的数据类型还有时间类型以及float类型
A int64B objectC int32D categoryE float64dtype: object

查看数据

# 比如说看前5行df.head()
A B C D
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-03 -0.518426 0.730866 -1.033830 0.712624
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
# 后4行df.tail(4)
A B C D
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
2018-11-06 -0.030580 0.545561 1.091127 -0.131579
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
# 查看DataFrame的索引df.index
DatetimeIndex(['2018-11-01', '2018-11-02', '2018-11-03', '2018-11-04', '2018-11-05', '2018-11-06', '2018-11-07'], dtype='datetime64[ns]', freq='D')
# 查看DataFrame的列索引df.columns
Index(['A', 'B', 'C', 'D'], dtype='object')
# 查看DataFrame的数据,将DataFrame转化为numpy array 的数据形式df.values
array([[-0.1703643 , -0.23754121, 0.52990284, 0.66007285], [-0.15844565, -0.48853537, 0.08296043, -1.91357255], [-0.51842554, 0.73086567, -1.03382969, 0.71262388], [ 1.01352712, 0.27016714, 0.08180539, 0.17819344], [-0.89749689, -0.01627937, -0.23499323, 0.08120819], [-0.03058032, 0.54556063, 1.09112723, -0.13157934], [-0.31334198, -0.68817881, -0.41775393, 0.85502652]])

数据的简单统计

# 可以使用describe函数对DataFrame中的数值型数据进行统计df.describe()
A B C D
count 7.000000 7.000000 7.000000 7.000000
mean -0.153590 0.016580 0.014174 0.063139
std 0.590144 0.527860 0.680939 0.945526
min -0.897497 -0.688179 -1.033830 -1.913573
25% -0.415884 -0.363038 -0.326374 -0.025186
50% -0.170364 -0.016279 0.081805 0.178193
75% -0.094513 0.407864 0.306432 0.686348
max 1.013527 0.730866 1.091127 0.855027
df2.describe()### 对于其他的数据类型的数据describe函数会自动过滤掉
A C E
count 4.0 4.0 4.0
mean 1.0 3.0 1.5
std 0.0 0.0 0.0
min 1.0 3.0 1.5
25% 1.0 3.0 1.5
50% 1.0 3.0 1.5
75% 1.0 3.0 1.5
max 1.0 3.0 1.5
### DataFrame 的转置,将列索引与行索引进行调换,行数据与列数进行调换df.T
2018-11-01 00:00:00 2018-11-02 00:00:00 2018-11-03 00:00:00 2018-11-04 00:00:00 2018-11-05 00:00:00 2018-11-06 00:00:00 2018-11-07 00:00:00
A -0.170364 -0.158446 -0.518426 1.013527 -0.897497 -0.030580 -0.313342
B -0.237541 -0.488535 0.730866 0.270167 -0.016279 0.545561 -0.688179
C 0.529903 0.082960 -1.033830 0.081805 -0.234993 1.091127 -0.417754
D 0.660073 -1.913573 0.712624 0.178193 0.081208 -0.131579 0.855027
df
A B C D
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-03 -0.518426 0.730866 -1.033830 0.712624
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
2018-11-06 -0.030580 0.545561 1.091127 -0.131579
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027

数据的排序

df.sort_index(ascending=False)### 降序,按照列进行降序,通过该索引列
A B C D
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
2018-11-06 -0.030580 0.545561 1.091127 -0.131579
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-03 -0.518426 0.730866 -1.033830 0.712624
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
print(df.sort_values(by=['B','A']))# 默认是升序,可以选择多指排序,先照B,后排A,如果B中的数据一样,则按照A中的大小进行排序df.sort_values(by='B')
A B C D2018-11-07 -0.313342 -0.688179 -0.417754 0.8550272018-11-02 -0.158446 -0.488535 0.082960 -1.9135732018-11-01 -0.170364 -0.237541 0.529903 0.6600732018-11-05 -0.897497 -0.016279 -0.234993 0.0812082018-11-04 1.013527 0.270167 0.081805 0.1781932018-11-06 -0.030580 0.545561 1.091127 -0.1315792018-11-03 -0.518426 0.730866 -1.033830 0.712624
A B C D
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-06 -0.030580 0.545561 1.091127 -0.131579
2018-11-03 -0.518426 0.730866 -1.033830 0.712624

选择数据(类似于数据库中sql语句)

df['A']# 取出单独的一列数据,等价于df.A
2018-11-01 -0.1703642018-11-02 -0.1584462018-11-03 -0.5184262018-11-04 1.0135272018-11-05 -0.8974972018-11-06 -0.0305802018-11-07 -0.313342Freq: D, Name: A, dtype: float64
# 通过[]进行行选择切片df[0:3]
A B C D
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-03 -0.518426 0.730866 -1.033830 0.712624
# 同时对于时间索引而言,可以直接使用比如df['2018-11-01':'2018-11-04']
A B C D
2018-11-01 -0.170364 -0.237541 0.529903 0.660073
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
2018-11-03 -0.518426 0.730866 -1.033830 0.712624
2018-11-04 1.013527 0.270167 0.081805 0.178193

另外可以使用标签来选择

df.loc['2018-11-01']
A -0.170364B -0.237541C 0.529903D 0.660073Name: 2018-11-01 00:00:00, dtype: float64
#### 通过标签来进行多个轴上的进行选择df.loc[:,['A','B']] # 等价于df[['A','B']]
A B
2018-11-01 -0.170364 -0.237541
2018-11-02 -0.158446 -0.488535
2018-11-03 -0.518426 0.730866
2018-11-04 1.013527 0.270167
2018-11-05 -0.897497 -0.016279
2018-11-06 -0.030580 0.545561
2018-11-07 -0.313342 -0.688179
df.loc['2018-11-01':'2018-11-03',['A','B']]
A B
2018-11-01 -0.170364 -0.237541
2018-11-02 -0.158446 -0.488535
2018-11-03 -0.518426 0.730866
#### 获得一个标量数据df.loc['2018-11-01','A']
-0.17036430076617162

通过位置获取数据

df.iloc[3] # 获得第四行的数据
A 1.013527B 0.270167C 0.081805D 0.178193Name: 2018-11-04 00:00:00, dtype: float64
df.iloc[1:3,1:4] # 与numpy中的ndarray类似
B C D
2018-11-02 -0.488535 0.08296 -1.913573
2018-11-03 0.730866 -1.03383 0.712624
# 可以选取不连续的行或者列进行取值df.iloc[[1,3],[1,3]]
B D
2018-11-02 -0.488535 -1.913573
2018-11-04 0.270167 0.178193
# 对行进行切片处理df.iloc[1:3,:]
A B C D
2018-11-02 -0.158446 -0.488535 0.08296 -1.913573
2018-11-03 -0.518426 0.730866 -1.03383 0.712624
# 对列进行切片df.iloc[:,1:4]
B C D
2018-11-01 -0.237541 0.529903 0.660073
2018-11-02 -0.488535 0.082960 -1.913573
2018-11-03 0.730866 -1.033830 0.712624
2018-11-04 0.270167 0.081805 0.178193
2018-11-05 -0.016279 -0.234993 0.081208
2018-11-06 0.545561 1.091127 -0.131579
2018-11-07 -0.688179 -0.417754 0.855027
# 获取特定的值df.iloc[1,3]
-1.9135725473596013

布尔值索引

# 使用单列的数据作为条件进行筛选df[df.A>0]
A B C D
2018-11-04 1.013527 0.270167 0.081805 0.178193
#很少用到,很少使用这种大范围的条件进行筛选df[df>0]
A B C D
2018-11-01 NaN NaN 0.529903 0.660073
2018-11-02 NaN NaN 0.082960 NaN
2018-11-03 NaN 0.730866 NaN 0.712624
2018-11-04 1.013527 0.270167 0.081805 0.178193
2018-11-05 NaN NaN NaN 0.081208
2018-11-06 NaN 0.545561 1.091127 NaN
2018-11-07 NaN NaN NaN 0.855027
# 使用isin()方法过滤df2.head()
A B C D E
0 1 20181101 3 test 1.5
1 1 20181101 3 train 1.5
2 1 20181101 3 test 1.5
3 1 20181101 3 train 1.5
df2[df2['D'].isin(['test'])]
A B C D E
0 1 20181101 3 test 1.5
2 1 20181101 3 test 1.5

设定数值(类似于sql update 或者add)

  • 设定一个新的列
df['E'] = [1,2,3,4,5,6,7]
df
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 0.660073 1
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 2
2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
2018-11-04 1.013527 0.270167 0.081805 0.178193 4
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
  • 通过标签设定新的值
df.loc['2018-11-01','E']= 10 # 第一行,E列的数据修改为10
df
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 0.660073 10
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 2
2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
2018-11-04 1.013527 0.270167 0.081805 0.178193 4
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
df.iloc[1,4]=5000 # 第二行第五列数据修改为5000
df
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 0.660073 10
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 5000
2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
2018-11-04 1.013527 0.270167 0.081805 0.178193 4
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
df3 =df.copy()df3[df30]= -df3df3 # 都变成非负数
A B C D E
2018-11-01 0.170364 0.237541 0.529903 0.660073 10
2018-11-02 0.158446 0.488535 0.082960 1.913573 5000
2018-11-03 0.518426 0.730866 1.033830 0.712624 3
2018-11-04 1.013527 0.270167 0.081805 0.178193 4
2018-11-05 0.897497 0.016279 0.234993 0.081208 5
2018-11-06 0.030580 0.545561 1.091127 0.131579 6
2018-11-07 0.313342 0.688179 0.417754 0.855027 7

缺失值处理

df
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 0.660073 10
2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 5000
2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
2018-11-04 1.013527 0.270167 0.081805 0.178193 4
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
df['E']=[1,np.nan,2,np.nan,4,np.nan,6]
df.loc['2018-11-01':'2018-11-03','D']=np.nan
df
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
2018-11-02 -0.158446 -0.488535 0.082960 NaN NaN
2018-11-03 -0.518426 0.730866 -1.033830 NaN 2.0
2018-11-04 1.013527 0.270167 0.081805 0.178193 NaN
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 NaN
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
  • 去掉缺失值的行
df4 = df.copy()
df4.dropna(how='any')
A B C D E
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
df4.dropna(how='all')# '''DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)''' # aixs 轴0或者1 index或者columns# how 方式# thresh 超过阈值个数的缺失值# subset 那些字段的处理# inplace 是否直接在原数据框中的替换
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
2018-11-02 -0.158446 -0.488535 0.082960 NaN NaN
2018-11-03 -0.518426 0.730866 -1.033830 NaN 2.0
2018-11-04 1.013527 0.270167 0.081805 0.178193 NaN
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 NaN
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
  • 对缺失值就行填充
df4.fillna(1000)
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 1000.000000 1.0
2018-11-02 -0.158446 -0.488535 0.082960 1000.000000 1000.0
2018-11-03 -0.518426 0.730866 -1.033830 1000.000000 2.0
2018-11-04 1.013527 0.270167 0.081805 0.178193 1000.0
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 1000.0
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
  • 对数据进行布尔值进行填充
pd.isnull(df4)
A B C D E
2018-11-01 False False False True False
2018-11-02 False False False True True
2018-11-03 False False False True False
2018-11-04 False False False False True
2018-11-05 False False False False False
2018-11-06 False False False False True
2018-11-07 False False False False False

数据操作

#统计的工作一般情况下都不包含缺失值,df4.mean() # 默认是对列进行求平均,沿着行方向也就是axis=0
A -0.153590B 0.016580C 0.014174D 0.245712E 3.250000dtype: float64
df4.mean(axis=1)# 沿着列方向求每行的平均
2018-11-01 0.2804992018-11-02 -0.1880072018-11-03 0.2946532018-11-04 0.3859232018-11-05 0.5864882018-11-06 0.3686322018-11-07 1.087150Freq: D, dtype: float64
# 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:s = pd.Series([1,3,4,np.nan,6,7,8],index=dates)s
2018-11-01 1.02018-11-02 3.02018-11-03 4.02018-11-04 NaN2018-11-05 6.02018-11-06 7.02018-11-07 8.0Freq: D, dtype: float64
df4.sub(s,axis='index')
A B C D E
2018-11-01 -1.170364 -1.237541 -0.470097 NaN 0.0
2018-11-02 -3.158446 -3.488535 -2.917040 NaN NaN
2018-11-03 -4.518426 -3.269134 -5.033830 NaN -2.0
2018-11-04 NaN NaN NaN NaN NaN
2018-11-05 -6.897497 -6.016279 -6.234993 -5.918792 -2.0
2018-11-06 -7.030580 -6.454439 -5.908873 -7.131579 NaN
2018-11-07 -8.313342 -8.688179 -8.417754 -7.144973 -2.0
df4
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
2018-11-02 -0.158446 -0.488535 0.082960 NaN NaN
2018-11-03 -0.518426 0.730866 -1.033830 NaN 2.0
2018-11-04 1.013527 0.270167 0.081805 0.178193 NaN
2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
2018-11-06 -0.030580 0.545561 1.091127 -0.131579 NaN
2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
df4.apply(np.cumsum)
A B C D E
2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
2018-11-02 -0.328810 -0.726077 0.612863 NaN NaN
2018-11-03 -0.847235 0.004789 -0.420966 NaN 3.0
2018-11-04 0.166292 0.274956 -0.339161 0.178193 NaN
2018-11-05 -0.731205 0.258677 -0.574154 0.259402 7.0
2018-11-06 -0.761786 0.804237 0.516973 0.127822 NaN
2018-11-07 -1.075128 0.116059 0.099219 0.982849 13.0
df4.apply(lambda x: x.max()-x.min())
A 1.911024B 1.419044C 2.124957D 0.986606E 5.000000dtype: float64

统计个数与离散化

s = pd.Series(np.random.randint(0,7,size=15))s
0 51 42 13 24 15 06 27 68 49 310 111 112 113 314 2dtype: int32
s.value_counts()# 统计元素的个数,并按照元素统计量进行排序,未出现的元素不会显示出来
1 52 34 23 26 15 10 1dtype: int64
s.reindex(range(0,7))# 按照固定的顺序输出元素的个数统计
0 51 42 13 24 15 06 2dtype: int32
s.mode()# 众数
0 1dtype: int32
  • 离散化
# 连续值转化为离散值,可以使用cut函数进行操作(bins based on vlaues) qcut (bins based on sample# quantiles) 函数arr = np.random.randint(0,20,size=15) # 正态分布arr
array([ 5, 18, 13, 16, 16, 1, 15, 11, 0, 17, 16, 18, 15, 12, 13])
factor = pd.cut(arr,3)factor
[(-0.018, 6.0], (12.0, 18.0], (12.0, 18.0], (12.0, 18.0], (12.0, 18.0], ..., (12.0, 18.0], (12.0, 18.0], (12.0, 18.0], (6.0, 12.0], (12.0, 18.0]]Length: 15Categories (3, interval[float64]): [(-0.018, 6.0] <>.0, 12.0] <>.0, 18.0]]
pd.value_counts(factor)
(12.0, 18.0] 10(-0.018, 6.0] 3(6.0, 12.0] 2dtype: int64
factor1 = pd.cut(arr,[-1,5,10,15,20])
pd.value_counts(factor1)
(15, 20] 6(10, 15] 6(-1, 5] 3(5, 10] 0dtype: int64
factor2 = pd.qcut(arr,[0,0.25,0.5,0.75,1])
pd.value_counts(factor2)
(11.5, 15.0] 5(-0.001, 11.5] 4(16.0, 18.0] 3(15.0, 16.0] 3dtype: int64

pandas 处理字符串(单独一个大的章节,这人不做详述)

数据合并

  • concat
  • merge(类似于sql数据库中的join)
  • append

首先看concat合并数据框

df = pd.DataFrame(np.random.randn(10,4)) # 10行列的标准正态分布数据框df
0 1 2 3
0 0.949746 -0.050767 1.478622 -0.239901
1 -0.297120 -0.562589 0.371837 1.180715
2 0.953856 0.492295 0.821156 -0.323328
3 0.016153 1.554225 -1.166304 -0.904040
4 0.204763 -0.951291 -1.317620 0.672900
5 2.241006 -0.925746 -1.961408 0.853367
6 2.217133 -0.430812 0.518926 1.741445
7 -0.571104 -0.437305 -0.902241 0.786231
8 -2.511387 0.523760 1.811622 -0.777296
9 0.252690 0.901952 0.619614 -0.006631
d1,d2,d3 = df[:3],df[3:7],df[7:]d1,d2,d3
( 0 1 2 3 0 0.949746 -0.050767 1.478622 -0.239901 1 -0.297120 -0.562589 0.371837 1.180715 2 0.953856 0.492295 0.821156 -0.323328, 0 1 2 3 3 0.016153 1.554225 -1.166304 -0.904040 4 0.204763 -0.951291 -1.317620 0.672900 5 2.241006 -0.925746 -1.961408 0.853367 6 2.217133 -0.430812 0.518926 1.741445, 0 1 2 3 7 -0.571104 -0.437305 -0.902241 0.786231 8 -2.511387 0.523760 1.811622 -0.777296 9 0.252690 0.901952 0.619614 -0.006631)
pd.concat([d1,d2,d3])#合并三个数据框,数据结构相同,通常合并相同结构的数据,数据框中的字段一致,类似于数据添加新的数据来源
0 1 2 3
0 0.949746 -0.050767 1.478622 -0.239901
1 -0.297120 -0.562589 0.371837 1.180715
2 0.953856 0.492295 0.821156 -0.323328
3 0.016153 1.554225 -1.166304 -0.904040
4 0.204763 -0.951291 -1.317620 0.672900
5 2.241006 -0.925746 -1.961408 0.853367
6 2.217133 -0.430812 0.518926 1.741445
7 -0.571104 -0.437305 -0.902241 0.786231
8 -2.511387 0.523760 1.811622 -0.777296
9 0.252690 0.901952 0.619614 -0.006631

merge方式合并(数据库中的join)

left = pd.DataFrame({'key':['foo','foo'],'lval':[1,2]})right = pd.DataFrame({'key':['foo','foo'],'rval':[4,5]})
left
key lval
0 foo 1
1 foo 2
right
key rval
0 foo 4
1 foo 5
pd.merge(left,right,on='key')
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
left = pd.DataFrame({'key':['foo','bar'],'lval':[1,2]})right = pd.DataFrame({'key':['foo','bar'],'rval':[4,5]})pd.merge(left,right,on='key')
key lval rval
0 foo 1 4
1 bar 2 5
left
key lval
0 foo 1
1 bar 2
right
key rval
0 foo 4
1 bar 5

Append方式合并数据

# 与concat 类似,常用的方法可以参考一下日子df = pd.DataFrame(np.random.randn(8,4),columns=['A','B','C','D'])df
A B C D
0 1.825997 -0.331086 -0.067143 0.747226
1 -0.027497 0.861639 0.928621 -2.549617
2 -0.546645 -0.072253 -0.788483 0.484140
3 -0.472240 -1.776993 -1.647407 0.170596
4 -0.099453 0.380143 -0.890510 1.233741
5 0.351915 0.137522 -1.165938 1.128146
6 0.558442 -1.047060 -0.598197 -1.979876
7 0.067321 -1.037666 -1.140675 -0.098562
## d1 = df.iloc[3]df.append(d1,ignore_index= True)
A B C D
0 1.825997 -0.331086 -0.067143 0.747226
1 -0.027497 0.861639 0.928621 -2.549617
2 -0.546645 -0.072253 -0.788483 0.484140
3 -0.472240 -1.776993 -1.647407 0.170596
4 -0.099453 0.380143 -0.890510 1.233741
5 0.351915 0.137522 -1.165938 1.128146
6 0.558442 -1.047060 -0.598197 -1.979876
7 0.067321 -1.037666 -1.140675 -0.098562
8 -0.472240 -1.776993 -1.647407 0.170596

分组操作Groupby操作

df = pd.DataFrame({'A':['foo','bar','foo','bar'], 'B':['one','one','two','three'], 'C':np.random.randn(4), 'D':np.random.randn(4)})df
A B C D
0 foo one 0.938910 0.505163
1 bar one 0.660543 0.353860
2 foo two 0.520309 1.157462
3 bar three -1.054927 0.290693
df.groupby('A').sum()
C D
A
bar -0.394384 0.644553
foo 1.459219 1.662625
df.groupby('A').size()
Abar 2foo 2dtype: int64
df.groupby(['A','B']).sum()
C D
A B
bar one 0.660543 0.353860
three -1.054927 0.290693
foo one 0.938910 0.505163
two 0.520309 1.157462
df.groupby(['A','B']).size()
A B bar one 1 three 1foo one 1 two 1dtype: int64

reshape操作

tuples = list(zip(*[['bar','bar','baz','baz','foo','foo','qux','qux'], ['one','two','one','two','one','two','one','two']]))
index = pd.MultiIndex.from_tuples(tuples,names=['first','second'])df = pd.DataFrame(np.random.randn(8,2),index= index,columns=['A','B'])df2 = df[:4]
df2
A B
first second
bar one 0.510758 0.641370
two 0.481230 -0.470894
baz one -0.076294 0.121247
two 0.378507 -1.358932
df
A B
first second
bar one 0.510758 0.641370
two 0.481230 -0.470894
baz one -0.076294 0.121247
two 0.378507 -1.358932
foo one -0.873012 0.531595
two 0.266968 -0.393124
qux one 0.981866 1.205994
two 0.265772 0.132489

stack 与unstack 方法

df2_stacked = df2.stack() # 将column也作为index
df2_stacked
first second bar one A 0.510758 B 0.641370 two A 0.481230 B -0.470894baz one A -0.076294 B 0.121247 two A 0.378507 B -1.358932dtype: float64
df2_stacked.unstack() # 回复到原来的状态
A B
first second
bar one 0.510758 0.641370
two 0.481230 -0.470894
baz one -0.076294 0.121247
two 0.378507 -1.358932
df2_stacked
first second bar one A 0.510758 B 0.641370 two A 0.481230 B -0.470894baz one A -0.076294 B 0.121247 two A 0.378507 B -1.358932dtype: float64
df2_stacked.unstack(1)
second one two
first
bar A 0.510758 0.481230
B 0.641370 -0.470894
baz A -0.076294 0.378507
B 0.121247 -1.358932
df2_stacked.unstack(0)
first bar baz
second
one A 0.510758 -0.076294
B 0.641370 0.121247
two A 0.481230 0.378507
B -0.470894 -1.358932

pivot_table 透视表

df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, 'D' : np.random.randn(12), 'E' : np.random.randn(12)})
df
A B C D E
0 one A foo 0.006247 -0.894827
1 one B foo 1.653974 -0.340107
2 two C foo -1.627485 -1.011403
3 three A bar -0.716002 1.533422
4 one B bar 0.422688 -0.807675
5 one C bar 0.264818 0.249770
6 two A foo 0.643288 -1.166616
7 three B foo 0.348041 -0.659099
8 one C foo 1.593486 -1.098731
9 one A bar -0.389344 0.919528
10 two B bar -1.407450 1.269716
11 three C bar -0.172672 0.883970
pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.mean)
C bar foo
A B
one A -0.389344 0.006247
B 0.422688 1.653974
C 0.264818 1.593486
three A -0.716002 NaN
B NaN 0.348041
C -0.172672 NaN
two A NaN 0.643288
B -1.407450 NaN
C NaN -1.627485
pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.sum)
C bar foo
A B
one A -0.389344 0.006247
B 0.422688 1.653974
C 0.264818 1.593486
three A -0.716002 NaN
B NaN 0.348041
C -0.172672 NaN
two A NaN 0.643288
B -1.407450 NaN
C NaN -1.627485
pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.mean,fill_value=0)
C bar foo
A B
one A -0.389344 0.006247
B 0.422688 1.653974
C 0.264818 1.593486
three A -0.716002 0.000000
B 0.000000 0.348041
C -0.172672 0.000000
two A 0.000000 0.643288
B -1.407450 0.000000
C 0.000000 -1.627485
df1 = pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.mean,fill_value=0)
df1.index
MultiIndex(levels=[['one', 'three', 'two'], ['A', 'B', 'C']], labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], names=['A', 'B'])
df1.stack()
A B C one A bar -0.389344 foo 0.006247 B bar 0.422688 foo 1.653974 C bar 0.264818 foo 1.593486three A bar -0.716002 foo 0.000000 B bar 0.000000 foo 0.348041 C bar -0.172672 foo 0.000000two A bar 0.000000 foo 0.643288 B bar -1.407450 foo 0.000000 C bar 0.000000 foo -1.627485dtype: float64
df1.unstack()
C bar foo
B A B C A B C
A
one -0.389344 0.422688 0.264818 0.006247 1.653974 1.593486
three -0.716002 0.000000 -0.172672 0.000000 0.348041 0.000000
two 0.000000 -1.407450 0.000000 0.643288 0.000000 -1.627485
df1.unstack(1)
C bar foo
B A B C A B C
A
one -0.389344 0.422688 0.264818 0.006247 1.653974 1.593486
three -0.716002 0.000000 -0.172672 0.000000 0.348041 0.000000
two 0.000000 -1.407450 0.000000 0.643288 0.000000 -1.627485
df1.unstack(0)
C bar foo
A one three two one three two
B
A -0.389344 -0.716002 0.00000 0.006247 0.000000 0.643288
B 0.422688 0.000000 -1.40745 1.653974 0.348041 0.000000
C 0.264818 -0.172672 0.00000 1.593486 0.000000 -1.627485

至此,pandas的基础的使用介绍也就结束了,后续会有专题性质的分析,包括(字符串处理,apply的使用,数据合并,透视表,时间序列的分析)

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
十分钟搞定pandas
PANDAS QUICK START 
[转]10 minutes to pandas
简约而不简单|值得收藏的Pandas基本操作指南
pandas小记:pandas索引和选择
玩转Python金融量化利器之Pandas
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服