打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
汽车电子行业:汽车智能化加速渗透,激光雷达赛道有望迎来放量期
userphoto

2023.01.31 吉林

关注

报告出品/作者:华创证券、耿琛、岳阳

以下为报告原文节选

------

一、激光雷达:产品成熟度持续提升,车载领域具备良好前景

激光雷达(LiDAR,Laser Detecting and Ranging)是一种通过脉冲激光照射目标并用传感器测量反射脉冲返回时间来测量目标距离的测量工具。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,从而对周围环境进行探测、跟踪和识别。它由激光发射机、光学接收机、转台和信息处理系统等组成。其核心优势在于利用激光的高频特性进行大量、高速的位置及速度信息测量,形成准确清晰的物体3D建。

激光雷达21世纪初引入汽车领域,随ADAS渗透率提升迎来快速发展。激光雷达最先用于地图测绘领域,高精度要求使得激光雷达成本居高不下。Velodyne将激光雷达应用到DARPA无人驾驶汽车挑战赛,首次将激光雷达带入了自动驾驶领域。其后随着ADAS等下游应用的持续发展,激光雷达领域企业不断增多,随着研发的持续进行,激光雷达的产品性能稳步提升,成本大幅下降,行业也迎来了长足的发展。

激光雷达产品可以从显性参数、实测性能表现及隐性指标等方面进行评估和比较。显性参数主要指列示在产品参数表中的信息,主要包含测远能力、点频、角分辨率、视场角、精准度、功耗和集成度等。实测性能表现则主要指在实际使用激光雷达的过程中所测得的产品性能,其决定了无人驾驶汽车和服务型机器人对周围环境的有效感知距离。相比于显性参数,用户会更加关注实测性能,但激光雷达作为近年来才在市场获得较高关注度的新兴产品,能够参考的公开测试数据有限。隐性指标包含激光雷达产品的可靠性、安全性、使用寿命、成本控制、可量产性等,这些指标更加难以量化,也缺乏公开信息。

(一)激光雷达技术路线多样,当前仍处于多技术路线并行阶段

激光雷达的技术路线有四个主要的维度:测距原理、光源、探测器、光束操纵。激光雷达主要包括激光发射、扫描系统、激光接收和信息处理四大系统,四个系统相辅相成。根据这四个系统的不同特征,可以从四个不同维度来阐述激光雷达技术路线。其中光源和探测器即激光雷达的发射端与接收端,光束操纵即激光雷达的扫描方式,测距则为信息处理提供距离信息。根据四个主要的维度可以将激光雷达进行分类,每个不同分类方式又可进一步细分为不同的技术路线,不同路线之间存在较大差异。

根据测距方法分类,激光雷达可分为4种类型。激光雷达根据测距原理主要有四类:飞行时间法(ToF,Time of Flight)、调频连续波(FMCW,Frequency Modulated Continuous Wave)、三角测距法和相位法。最主要的两种测量方法是ToF和FMCW。ToF测量原理是通过记录短脉冲发射到接收到反射光之间的时间来测量距离,并在测量过程中通过反射光的角度来测量物体的位置。FMCW的测量原理是将发射激光的光频进行线性调制,使回波信号与参考光进行相干拍频得到频率差来间接获得飞行时间反推目标物距离,优点是抗干扰强、可直接测量速度。

ToF测距方法当前为主流,FMCW具备良好前景。激光雷达测距方法中ToF与FMCW能够实现室外阳光下较远的测程(100~250m),是车载激光雷达的优选方案。ToF是目前车载中长距激光雷达市场的主流方案,有非常高的激光发射频率,具备高精度探测优势,但ToF激光雷达最大激光功率受到限制,探测距离存在瓶颈,在白天会受到阳光干扰,在接收信号过程中产生噪音。而FMCW激光雷达除了成本高外具有可直接测量速度信息以及抗干扰、远程性高的优势,未来随着FMCW激光雷达整机和上游产业链的成熟,其占比有望获得提升,成为和ToF并存的主要测距方式。

激光雷达里的探测器即光电探测器可分为PIN PD、APD、SPAD、SiPM 四类,APD为当前主流

PIN PD(PIN光电二极管)适用于FMCW 测距激光雷达,成本低;

APD(Avalanche Photo Diode),即雪崩式光电二极管,较为成熟的APD被广泛采用在ToF 类激光雷达上,是目前使用最为广泛的光电探测器件;

SPAD(单光子雪崩二极管)具有低激光功率下远距离的探测能力,但缺点是过于灵敏的接收性能会带来通道串扰大、寄生脉冲等问题,另外其电路设计等工艺难题也带来了较高的制造成本;

SiPM(硅光电倍增管)是多个SPAD的阵列形式,可通过多个SPAD获得更高的可探测范围以及配合阵列光源使用,更容易集成CMOS技术。

EEL制作工艺复杂,VCSEL未来有望迎来快速发展。激光器光源方面,从发射维度看可以分为两大类:边发射(EEL)和垂直腔面发射(VCSEL)。据禾赛科技招股书,EEL作为探测光源具有高发光功率密度的优势,但因为其发光面位于半导体晶圆的侧面,使用过程中需要进行切割、翻转、镀膜、再切割的复杂工艺步骤,而且每颗激光器极大地依赖产线工人的手工装调技术,生产成本高且一致性难以保障。而VCSEL因为发光面与半导体晶圆平行,其所形成的激光器阵列易于与平面化的电路芯片键合,无需再进行每个激光器的单独装调,且易于和面上工艺的硅材料微型透镜进行整合,能有效提升光束质量。近年来国内外多家VCSEL激光器公司纷纷开发了多结VCSEL激光器,使得VCSEL光功率密度得到有效提升,VCSEL得以被运用在长距激光雷达领域。从生产成本和产品性能可靠性看,VCSEL未来将有望逐渐取代EEL。

按激光波长将激光器分类,905nm和1550nm波长激光器互补共存。激光最关键指标在于波长,波长主要分为两个主流的发射波段,分别为1000nm以内以及1000到2000nm之间,其中1000nm以内区间典型值是905nm,1000到2000nm之间典型值是1550nm。

905nm属于近红外激光,容易被人体视网膜吸收并造成视网膜损伤,因此905nm方案只能以低功率运行,安全探测距离不超过200m,但其成本相对较低。

1550nm远离人眼可见光波长,大部分光在到达视网膜之前就会被眼球的透明部分吸收,安全功率上限是905nm的40倍,安全探测距离可达到250米,甚至300米以上,但其需要使用光纤激光器,成本较905nm更高。

总体而言,905nm和1550nm的激光器在当前时间点来看各有优缺点,两个波段对于车载传感器来说是一个互补共存的状态。

机械式激光雷达仍占据行业主要地位,半固态/固态式具备良好前景。根据扫描方式分类,激光雷达主要分为机械式激光雷达、半固态式激光雷达以及固态式激光雷达。长期来看,固态激光雷达由于不存在可活动部件,在成本和稳定性方面都有较大潜力,是技术上的最优解。而目前三种技术路线中,机械式最为常用,已经广泛应用于Robotaxi等领域;混合式激光雷达是机械式和纯固态式的折中方案(较机械式只扫描前方一定角度内的范围;较纯固态式仍有一些较小的活动部件),是目前阶段乘用车量产装车的主流产。

机械式雷达发展较为成熟,但因成本和部件冗杂难以实现车规级量产。机械式激光雷达的技术方案主要是高线数机械式方案。通过电机带动光机结构整体旋转的机械式激光雷达是激光雷达经典的技术架构,其技术发展的创新点体现在系统通道数目的增加、测距范围的拓展、空间角度分辨率的提高、系统集成度与可靠性的提升等。相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,在视场范围内测距能力更强。但旋转部件体积和重量庞大,且高频转动和复杂机械结构让其内部的旋转部件容易损坏,使用寿命相对较短,难以满足车规的严苛要求。此外它靠增加收发模块的数量来实现高线束,使得成本较高,亦限制了其大规模使用。

半固态方案主要包括微振镜(MEMS)方案、转镜方案。半固态方案的特点是收发单元与扫描部件解耦,收发单元(如激光器、探测器)不再进行机械运动,由扫描部件的活动来实现部分视场角(如前向)的探测,体积相较于机械旋转式雷达更紧凑。

转镜方案成熟度相对较高,可靠性已得到车规验证。转镜方案固定了收发模组,用360°高速旋转的多面棱形反射镜来反射光束,完成激光雷达视野范围内全视场角扫描。转镜的优点在于棱镜、电机和发射器有更好的耐热性和耐用性,因此更容易过车规,当前Valeo的运用转镜方案的Scala1已经通过车规认证。转镜被视为机械式向纯固态进军的必经之路,是短期上车主流,且未来很长一段时间半固态和纯固态都将并行。

MEMS雷达受限于振镜偏转范围视场角较小,量产性强带来低成本优势。MEMS振镜是一种硅基半导体元器件,属于固态电子元件,它在硅基芯片上集成了体积十分精巧的微振镜,其核心结构是尺寸很小的悬臂梁,通过悬臂梁的抖动来实现镜片的偏转。MEMS微振镜摆脱了马达等机械运动装置,毫米级尺寸的微振镜大大减小了激光雷达的尺寸。由于其集成度较高,在工艺成熟后预期会在成本和可靠性方面具备较大的优势。MEMS方案的技术创新体现在开发口径更大、频率更高、可靠性优于振镜,以适用于激光雷达的技术方案。但现在市面上MEMS偏转角度只有10-30度,为了解决视场角较小问题,往往需要多个首发模组拼接而成。


固态式方案不含机械部件更易通过车规,但技术成熟度相对较低仍需进一步发展。固态式方案的特点是不再包含任何机械运动部件,适用于实现部分视场角(如前向)的探测,具体包括相控阵(Optical Phased Array, OPA)方案、Flash方案、电子扫描方案等。因为其不含机械扫描器件,内部结构相较于其他架构最为紧凑,在体积方面具备优势。

OPA尚处于起步阶段,制造难度和成本较高。光学相控阵技术(OPA)通过施加电压调节每个相控单元的相位关系,利用相干原理实现发射光束的偏转,从而完成系统对空间一定范围的扫描测量。在OPA系统中,光学相位调制器用于控制通过透镜的光束。OPA具备精度高、扫描快、体积小等优势,集成度高且量产标准化程度高,具备较强的技术优势,但由于目前OPA产业链尚处于起步阶段,且制造工艺复杂,量产性方面仍存在问题,另外由于其结构较为复杂,还存在控制复杂度高、功耗较高等问题。

Flash激光雷达能快速记录场景,但探测距离短板导致其应用受限。Flash型激光雷达由于不存在扫描系统、机械运动部件被归类为固态激光雷达。Flash型激光雷达可以通过短时间内向各个方向发射大覆盖面阵激光来快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦。它运行起来比较像摄像头,激光束会直接向各个方向漫射,只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。其缺点在于一旦传播距离超过几十米,返回的光子就大大减少,使得无法进行可靠的探测,同时也增加了对接收端和功率的高度要求,提高了成本。

(二)激光雷达产业链分工明确,车载下游应用快速发展占比持续提升

激光雷达集成衔接产业链上下游,具备较强产业附加价值。激光雷达主要包括激光发射、扫描系统、激光接收和信息处理四大系统,四个系统需要的不同电子零部件和光学系统共同构成了产业链的上游。具体而言,激光雷达行业的上游产业链主要包括激光器、探测器、扫描镜、FPGA芯片、模拟芯片,以及光学部件生产和加工商,是激光产业的基石,准入门槛较高;产业链中游利用上游激光芯片及光电器件、模组、光学元件等作为泵浦源进行各类激光雷达的制造与销售;产业链下游主要为各类激光雷达的应用领域,包括无人驾驶汽车、高级辅助驾驶、服务机器人、测绘、高精度地图等。激光雷达产业链公司分工明确,中游集成企业在产业链中起到了承上启下的作用,具备较强的产业地位。

产业链上游由国外厂商主导,下游国内外厂商差距不断缩小。激光雷达上游的核心元器件为激光器和探测器,国外供应商在激光器和探测器行业耕耘较久,在产品方面具备竞争优势。国内供应商近些年发展迅速,已经有通过车规认证的国产激光器和探测器上市。激光雷达下游产业链按照应用领域主要分为无人驾驶、高级辅助驾驶、服务机器人和车联网等行业。国外无人驾驶技术研究起步较早,相比国内仍具有一定的领先优势,但国内无人驾驶技术研究发展迅速,不断有应用试点和项目落地,与国外公司的差距在不断缩小;得益于国内快递和即时配送行业的高度成熟,服务机器人领域国内技术发展水平与国外相当,从机器人种类的丰富度和落地场景的多样性而言,国内企业更具优势;车联网行业更是在“新基建”等国家政策的大力推动下发展较国外更加迅速。

激光雷达成本中激光收发模块成本占比大,后续随着量产推进的整体成本有望进一步下探。将机械式激光雷达各部件的成本进行拆分,根据汽车之心的数据,Velodyne的机械式激光雷达VLP-16的成本拆解后激光器、探测器、光学部件、电路板、电机外壳及结构件成本占比分别为40%、35%、10%、10%、5%。进一步以法雷奥Scala转镜激光雷达为例,其激光收发相关模块激光板、机械镜和机械激光部件合计成本占比可达46%。无论是机械式还是半固态式激光雷达,激光收发相关模块成本占比均较高,这部分原因是因为当前激光雷达整体出货量较小,固定成本相对较高,后续随着激光雷达量产的推进,产品整体成本有望进一步下降。

当前测绘领域主导下游应用,汽车驾驶领域未来有望成为主力。激光雷达下游应用领域广泛,主要涉及无人驾驶、高阶辅助驾驶、服务机器人和智慧城市及测绘等行业。根据Yole Intelligence的《2022年汽车与工业领域激光雷达应用报告》数据,2021年激光雷达应用中地形测绘仍是最大的应用领域,占据60%的市场份额;紧随其后的是工业领域,占据27%的份额;无人驾驶出租车、ADAS(高级驾驶辅助系统)、风能和国防等领域占据剩下的13%。但近年来,随着全球各国对智能驾驶的政策支持,以及车载激光雷达行业的快速发展,无人驾驶和高级辅助驾驶中激光雷达的渗透率呈高速增长的态势。Frost&Sullivan预测至2025年高级辅助驾驶、无人驾驶将成为下游应用主力,分别占激光雷达市场的34.64%和26.30%,车载激光雷达领域对整体市场的增长贡献达到61%。

二、智能化与电动化双轮驱动,激光雷达市场有望迎来广阔增长空间

(一)智能化与电动化稳步推进,ADAS市场迎来快速增长

ADAS(
AdvancedDrivingAssistanceSystem,高级驾驶辅助系统)能够利用安装在车上的各式各样的传感器(毫米波雷达、激光雷达、单\双目摄像头以及卫星导航)收集数据,并结合地图数据进行系统计算,从而预先为驾驶者判断可能发生的危险,保证行车的安全性。ADAS技术大大降低了驾驶的复杂性,其功能包括车道监测、紧急制动、稳定性控制等。ADAS是无人驾驶的第一步,要想实现无人驾驶需要先普及ADAS。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
主流激光雷达分类及原理
汽车激光雷达行业:高阶自动驾驶必备传感器 远期市场将超百亿规模
产研 | 一文看懂中国激光雷达产业
火热的激光雷达,迎来关键时刻
深入解构车载激光雷达
自动驾驶路漫漫,激光雷达已先来! 前日集度汽车发布首款量产概念车ROBO
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服