打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
【工程笔记】电源常见的拓扑结构精华汇总


工程师不可不知的电源11种拓扑结构

基本名词

电源常见的拓扑结构

■Buck降压

■Boost升压

■Buck-Boost降压-升压

■Flyback反激

■Forward正激

■Two-Transistor Forward双晶体管正激

■Push-Pull推挽

■Half Bridge半桥

■Full Bridge全桥

■SEPIC

■C’uk

基本的脉冲宽度调制波形

这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:

1、Buck降压

特点

把输入降至一个较低的电压。

可能是最简单的电路。

电感/电容滤波器滤平开关后的方波。

输出总是小于或等于输入。

输入电流不连续 (斩波)。

输出电流平滑。

2、Boost升压

特点

把输入升至一个较高的电压。

与降压一样,但重新安排了电感、开关和二极管。

输出总是比大于或等于输入(忽略二极管的正向压降)。

输入电流平滑。

输出电流不连续 (斩波)。

3、Buck-Boost降压-升压

特点

电感、开关和二极管的另一种安排方法。

结合了降压和升压电路的缺点。

输入电流不连续 (斩波)。

输出电流也不连续 (斩波)。

输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。

“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

4、Flyback反激

特点

如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。

输出可以为正或为负,由线圈和二极管的极性决定。

输出电压可以大于或小于输入电压,由变压器的匝数比决定。

这是隔离拓扑结构中最简单的

增加次级绕组和电路可以得到多个输出。

5、Forward正激

特点

降压电路的变压器耦合形式。

不连续的输入电流,平滑的输出电流。

因为采用变压器,输出可以大于或小于输入,可以是任何极性。

增加次级绕组和电路可以获得多个输出。

在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组。

在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

6、Two-Transistor Forward双晶体管正激

特点

两个开关同时工作。

开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。

主要优点:

每个开关上的电压永远不会超过输入电压。

无需对绕组磁道复位。

7、Push-Pull推挽

特点

开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

良好的变压器磁芯利用率---在两个半周期中都传输功率。

全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

施加在FET上的电压是输入电压的两倍。

8、Half-Bridge半桥

特点

较高功率变换器极为常用的拓扑结构。

开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

良好的变压器磁芯利用率---在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。

全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

施加在FET上的电压与输入电压相等。

9、Full-Bridge全桥 

特点

较高功率变换器最为常用的拓扑结构。

开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。

良好的变压器磁芯利用率---在两个半周期中都传输功率。

全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

施加在 FETs上的电压与输入电压相等。

在给定的功率下,初级电流是半桥的一半。

10、SEPIC单端初级电感变换器 

特点

输出电压可以大于或小于输入电压。

与升压电路一样,输入电流平滑,但是输出电流不连续。

能量通过电容从输入传输至输出。

需要两个电感。

11、C’uk(Slobodan C’uk的专利) 

特点

输出反相

输出电压的幅度可以大于或小于输入。

输入电流和输出电流都是平滑的。

能量通过电容从输入传输至输出。

需要两个电感。

电感可以耦合获得零纹波电感电流。

12、C’uk(Slobodan C’uk的专利) 

下面讲解几种拓扑结构的工作细节

■降压调整器:

连续导电

临界导电

临界导电

■升压调整器 (连续导电)

■变压器工作

■反激变压器

■正激变压器

13、Buck-降压调整器-连续导电

电感电流连续。

Vout 是其输入电压 (V1)的均值。

输出电压为输入电压乘以开关的负荷比 (D)。

接通时,电感电流从电池流出。

开关断开时电流流过二极管。

忽略开关和电感中的损耗, D与负载电流无关。

降压调整器和其派生电路的特征是:

输入电流不连续 (斩波), 输出电流连续 (平滑)。

14、Buck-降压调整器-临界导电

■电感电流仍然是连续的,只是当开关再次接通时 “达到”零。

这被称为 “临界导电”。

输出电压仍等于输入电压乘以D。

15、Buck-降压调整器-不连续导电

在这种情况下,电感中的电流在每个周期的一段时间中为零。

输出电压仍然 (始终)是 v1的平均值。

输出电压不是输入电压乘以开关的负荷比 (D)。

当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。

16、Boost升压调整器

输出电压始终大于(或等于)输入电压。

输入电流连续,输出电流不连续(与降压调整器相反)。

输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情况下:

在本例中,Vin = 5,Vout = 15, and D = 2/3.Vout = 15,D = 2/3.

17、变压器工作(包括初级电感的作用)

变压器看作理想变压器,它的初级(磁化)电感与初级并联。

18、反激变压器

■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。

19、Forward 正激变换变压器

初级电感很高,因为无需存储能量。

磁化电流 (i1) 流入 “磁化电感”,使磁芯在初级开关断开后去磁 (电压反向)。

20、总结

此处回顾了目前开关式电源转换中最常见的电路拓扑结构。

还有许多拓扑结构,但大多是此处所述拓扑的组合或变形。

每种拓扑结构包含独特的设计权衡:

施加在开关上的电压

斩波和平滑输入输出电流

绕组的利用率

选择最佳的拓扑结构需要研究:

输入和输出电压范围

电流范围

成本和性能、大小和重量之比

PS本文参考自电源联盟


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
一文读懂二十种开关电源拓扑结构
DC/DC变换器的典型电路结构
一步步优化反激式设计(上)
新型拓扑LCC和LLC的比较_fha基波分析
常见开关电源(SMPS)的特点优缺点比较
【讨论】为何“正激”比“反激”可以做更大的功率?
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服