打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
灵魂的科学探索2

"心理学是一门很不能令人满意的学科。"

——沃尔夫冈·科勒尔(Wolfgong Kohler)

  图标记忆和工作记忆的衰减时间可能是相当短暂的。我们对引起意识的各种处理过程所需的时间了解多少呢?回忆一下第二章 的内容就知道,某些认知学家喜欢把大脑的活动看成是执行计算的过程,他们认为,引起意识的不是计算本身而是计算的结果。

  有些人声称,某些脑的活动并不能达到意识水平,除非它们持续的时间超过某个最短的时间。如果这种活动较弱,这一时间可能要长达半秒。单是为了指导我们探索意识的神经相关物,就需要我们了解与单个"知觉瞬间"momentof perception)对应的脑活动的持续时间类型。单个处理周期涉及怎样的时间类型呢?

  让我们考虑如下的情况。首先,给被试者呈现一个20毫秒长的瞬时红光刺激。之后,在原来的地方马上呈现一个20毫秒的绿光刺激。被试者报告看到了什么呢?他看到的不是一个红色闪光紧接着一个绿色的闪光,而是一个黄色闪光。就如同这两种颜色同时闪烁时所看到的情形一样。然而,如果绿色闪光不是紧跟红光之后,被试者就会报告看到红色闪光。这说明,直到来自绿光的信息被加工完之前,被试者不可能意识到黄颜色的存在。

  因此,你不能感受到一个刺激的真正开始时刻,你也无法估计出一个短暂刺激的真正持续时间。早在1887年,法国科学家查蓬特尔(A.Charpentier)就发现,长达66毫秒的闪光刺激,看起来并不比7毫秒的闪光刺激持续更长的时间。

  1967年美国心理学家罗伯特·埃弗龙(Robert Efron)就此问题写了一篇颇具洞察力的好文章。他通过用不同方法进行估算得出结论,处理周期的持续时间大约为6070毫秒。这个数字是对较容易观察的突出刺激而言。对于不清楚或较为复杂的刺激,其处理周期将会更长,这是不足为奇的。。

  那么,对于更为复杂的加工又需要多少时间呢?在这种情况下,通常是先呈现一个视觉刺激,然后紧接着一个快速的掩蔽(mask),即在视野中的同一位置呈现一个视觉模式,用以干扰观看原刺激所必需的某些处理过程,详细解释这一结果是困难的。如果系统是简单的、顺序进行的,信号从一个阶段稳定地进展到另一个阶段中间没有停顿,而且步入意识不花费时间,那么来自掩蔽的信号根本不可能赶上来自刺激的信号。既然掩蔽能够干扰刺激的知觉,这就意味着至少某些处理步骤是要花费时间的。这无论如何都是可能的。尽管在解释上还存在困难,但掩蔽效应仍可以向我们提供某些该过程的有用信息。

  美国心理学家罗伯特·雷诺兹(Robert Reynods)通过若干个实验来研究这个问题。他希望说明,知觉的不同方面可以在不同时刻看到。换句话说,他试图研究从刺激呈现到形成相对稳定的知觉的时间历程。

  作为一个例子,让我们看一看第四章描述过的虚幻轮廓的知觉所形成的时间。为了避免被试者猜测或撒谎,雷诺兹向被试者呈现图22中两个图样中的一个。每个图案都是由如图所示的三个缺口圆盘组成,其中第一个幻觉边框是直线,而第二个为曲线。刺激呈现时间为50毫秒,经过某个延迟①时间之后,紧接着呈现的是如图22c所示的一个掩蔽。刺激模式大而明亮,即使呈现时间很短被试者也能够清楚地看见三个缺口圆盘,由于存在图标记忆,在没有掩蔽的情况下,我们有理由认为,来自显示图形的信号对大脑的作用时间将会超过图形闪烁的时间50毫秒(大概有几百毫秒)。

  雷诺兹发现,如果掩蔽紧随刺激出现,则绝大多数被试者就看不到幻觉三角形。少数报告看到幻觉三角形的人也常常发生错误,将直线三角和曲线三角搞混。然而,如果延迟时间为5075毫秒,即SOA100125毫秒,则所有的观察者都报告说看到了三角形,尽管他们还不能完全准确他说出三角形的边是直线的还是曲线的。

  这清楚地表明,总的加工时间完全取决于他看到的是什么。在幻觉三角形出现之前的一段时间内,三个缺口圆盘(pacmen)可以看得很清楚。

  需要注意的是,这些实验并不能精确他说明,在何时大脑产生知觉的"神经相关物"。它只能说明,对于知觉的某些方面其处理时间很可能比其他方面要长。

  雷诺兹又进行了另一个更为复杂的类似实验。同样的幻觉三角形被画成是好像放置在透明的砖墙后面。对这样一种视觉图样的解释是不确定的。被试者先看见三个缺口圆盘,之后看见一个亮三角形,接着这个三角形又被拒绝,然后三角形知觉又重新出现①。这后三个阶段,每个的时间约为150毫秒。

  显然,"计算"的时间(timing)依赖于它们的复杂度。尽管详细的解释仍然有赖于确切了解不同脑区之间信号的传递方式及它们之间的相互作用(这不大可能是简单的),但目前起码我们对视觉处理所需的各种时间类型已有了一个粗略的想法。直到我们对参与看(seeing)的不同大脑过程以及它们的相互作用②方式有了更清楚的了解之前,我们不大可能得到更为精确的时间。

  我已经简要地阐述了视觉加工的诸多方面,但还没有系统他说明我们应如何认识所有这些加工,这是一个困难的问题。如果这是一本专门讨论视知觉的书,我将不得不用一定篇幅来描述一些有关视觉的最新思想,即大脑如何通过执行复杂的活动而使我们看见外部世界。除了第二章中提到的那些认知科学家以外,大多数理论家对意识没有表现出多大兴趣,由于这个原因,再加上还没有一个被普遍接受的视觉理论,因此,很多不同的探讨我都没有给出详细的描述。然而,下面简短的综述将会给读者一个大体的印象。①

  人们对视觉感兴趣有多种不同的原因。某些人希望制造一种视觉机器,它能像我们一样或比我们更好地看东西,以便把它应用于家庭、工业或者军事目的,除了把大脑看作是思想的源泉外,他们不太关心大脑如何完成这一工作。一个视觉机器并不需要严格模拟人脑,就像飞机并不需要扇动翅膀一样。

  另外一些人的主要兴趣则是人类如何看物体。某些功能主义者持有一种极端的观点。他们认为,了解脑的细节永远得不到任何有用的东西(2)。这一观点是如此古怪,以至大多数科学家都惊讶它为什么能够存在。而另一种极端的观点是来自某些神经科学家,他们主要关心动物脑神经细胞对视觉图像的响应,却极少关心这一活动如何产生视觉。幸运的是,现在有少数研究视觉的学生,他们的观点介于这两个极端之间,他们既对视觉心理学感兴趣也对神经细胞的行为感兴趣。

  人们对这些问题的想法也是千差万别的,某些人认为重要的是研究视觉环境——即我们脚下的大地、头顶的蓝天以及其问的万物。他们并不关心大脑,因为他们认为,所有需要去做的就是对环境的各方面产生"共鸣",不管它意味着什么。他们将自己称为吉布森主义者。因其己故宗师吉布森(JJGibson)而得名。另外的一些人则试图分析基本的、但是相当有限的视觉操作,如由阴影恢复形状、理发店标志错觉等,并且编制能解决这些问题的计算机程序。在人工智能领域,这种传统仍然很强。还有一些人则将大脑中的过程比作日常生活中的物体或事件。他们经常谈论"探照灯""为某一物体打开一个文件"之类的东西,在过去的二三十年间,所使用的解释常常建立在计算机如何工作这一基础之上。他使使用一系列明确的规则以获得所需的结论,并且涉及某些计算机概念,包括中央处理、随机存储等,较新近的进展便是神经网络(由相互作用的神经元集合组成),它们的相互作用大致上是并行的,而且没有明确的规则。(在第十三章中将作较全面的讨论。)

  正如我们在第四章看到的那样,格式塔心理学家希望揭示视觉活动的基本原理。他们争辩说,正如理解空气动力学定律对于理解鸟和飞机的飞行非常重要一样,理解视觉也必须寻找它所涉及的普遍原理。这一研究方法的现代形式常使用信息学术语表达他们的理论。毫不奇怪,数学家们则倾向于发现某种普遍的数学原理。对普通读者来讲,要描述所有这些思想也许需要一大本书的篇幅。

  所有这些观点都有一定的价值,但它们尚未被融合在一起,形成一个详细的、被广泛接受的视觉理论,只要回避视觉意识问题。任何现有的视觉理论都是不充分的,无论如何,视觉是一个复杂和困难的过程,直到下一个世纪以前,我们都不大可能提出一个综合的视觉理论。如果现在我们就想研究视觉意识问题,我们就不得不竭尽全力。为此,我们需要某种尝试性的观点,否则我们就只能错失良机。

  我认为,已故戴维·马尔(Devid MaIT)提出的研究方法是非常有用的,马尔是一个英国年轻人,为了给脑研究做准备,他在剑桥大学获得了一个数学学位。其博士论文提出了一个详细而新颖的小脑理论。后来,悉尼·布伦纳(sydney Brenner)和我在英国剑桥我们的实验室内为他提供了一间办公室,在那里,他提出了有关视皮层与海马的一般性操作理论,他的兴趣部分转向视觉人工智能,并到麻省理工学院(MIT)与意大利理论家托马索.波吉奥(TomasoPoggio)合作,19794月,他们两人一块到索尔克研究所(Salk lnstitute)对我进行了为期一个月的访问。马尔曾经写了一本名为《视觉》的著作(他死后才出版)。在书中,他以简捷的方式解释了许多有关视觉的创新思想(他的科学论文不易读懂)。虽然并非所有这些思想都能经得起时间的考验,但在当时,这本书对这些问题的阐述仍然是巧妙精辟的。最后一章 中有一段马尔与一个勉强的信奉者(我本人)之间的假想对话,它大体上模仿了他和波吉奥在索尔克的时候,我们三人之间的多次谈话。

  马尔设想出一个普遍的框架,用以描述视觉过程的粗略轮廓。他认为视觉的主要任务是获得形状的表象;明度、颜色、纹理等都不如形状重要,他自然而然地采纳了这样的观点,即大脑在其内部构建外部世界的符号表象,使隐含在视网膜图像中的很多方面显现出来。马尔认为(当然,这基本上是正确的),所有这些不可能一步完成,相反,他假设存在一个表象序列。他把它们称为"原始要素图""2.5维图""三维模型"表象。

  原始要素图(primalsketch)使二维图像中的光强变化、几何分布和组织等重要信息显现出来。它处理的特征包括边界线段、斑点、端点、间断点和边界等。25维要素图使以观察者为中心的坐标系中的可见表面的朝向(和大概深度)和它们的轮廓显现出来。3D模型表象则描述以物体为中心的各种形状及其空间组织。

  这样视觉任务至少可分成三个独立的阶段。这是非常有益的,因为它至少使我们意识到,看东西还需要做那么多事情。但在细节上不可能都是正确的。三个阶段可能只是一级近似,比如,颜色、纹理、运动理应加到"形状"之上。也许比三个阶段还要多,而且这些处理阶段也可能并不像他描述的那样具有严格的区别,它们可能存在双向相互作用,然而,他的框架毕竟说明了当我们看物体时所发生的处理类型,(我将在第十七章 中讨论它和神经科学的关系。)

  马尔35岁时因患白血病英年早逝,这是理论神经生物学研究的一个重大损失。我坚信,如果他还在世,他绝不会固步自封,而会随着研究的进展进一步发展其脑理论,他的聪明才智和富于想像的创造力一定会帮助我们冲破今天所面临的一切困难。因为他不仅仅具有非凡的智力,对不同领域内的大量实验证据还有极强的消化吸收能力。

  为了理解大脑我们需要怎样的解释风格呢?我本人所持的观点与拉马参准的知觉功利主义理论最为接近,他认为,视知觉既不涉及我们争论时所使用的那种严格的、理智的推论,也不涉及大脑对视觉输入的"共振"那种含糊不清的想法。视知觉也不像人工智能研究者经常暗示的那样,需要求解复杂的方程才能解决。与此相反,他认为知觉"使用的是粗略的拇指规则、捷径以及某些手法熟练的小窍门。这些都是经过亿万年的自然选择,由实验和错误获得的。这是生物中熟悉的策略,但由于某种原因没有引起心理学家的注意,他们似乎忘记了大脑本身就是一个生物器官。……"我也同意拉马参准的如下表述:"直接打开黑箱去研究神经细胞的响应是解决这一问题的最好方法。但是心理学家和计算机科学家却常常对此心存疑虑"

  按照拉马参准的观点,现阶段视觉心理学家的主要任务不是构建复杂的数学理论来解释他们的结果,而是去勾画出所谓的视觉"自然历史",特别是视觉的旬级阶段。当视觉任务被分解成许多组成部分,特别是当显示出某些相互作用较弱或缺少时,我们就会知道到底哪些东西需要用神经元术语去解释。这些解释未必包括复杂的数学理论,但必定涉及相互作用的神经元的特性以及它们相互联结的细节。因此,由于视觉世界的复杂性,人们期望找到具有多种动态相互作用方式、粗糙但却有效的快速加工过程。

  下一步我们就要了解人脑(和猴脑)以及组成它们的众多神经细胞和分子,这将是第二部分的主题。

  ①雷诺兹报告他的结果时使用的术语是"刺激前沿非对称"stimulusonsel asynchrony(SOA)。由于刺激的持续时间为50毫秒,因此,50毫秒的SOA意味着刺激结束后掩蔽立刻开始。我把它称为零延迟。

  ①请注意,被试者井非在一个实验中报告所有这些阶段。本结果是通过比较不同的掩蔽延迟之后的知觉做出的推论。

  ②我把里贝特(Libet)的某些研究工作放到第十五章去考虑。

  ①当然,对于那些进行视觉意识实验的人,最重要的是要具备视觉心理学和各种视知觉理论的详尽知识。这样,起码可以避免出现不应有的错误。

  (2)"关于大脑,你需要知道的一切就是如何模拟它。"哲学家、人工智能专家和语言学家常常采纳这种观点。在逃避严格的科学方法的人中间,这种观点并不陌生。

  "他们越看越惊讶,他知道得那么多,那小小的脑瓜怎能容得下。"

——奥利佛·戈德史密斯的田园诗《荒芜的村庄》(Oliver Goldsmith,The Deserted Village)

  从老鼠到人类,所有的哺乳动物的神经系统犹如按照同样的设计图构建的一样,尽管它们在尺寸上有极大的差别,比如,老鼠和大象,它们脑的大小不同,各个部分的比例也不尽相同。爬行动物、鸟类、两栖类和鱼类的脑与哺乳动物的脑存在着极为明显的差别,但它们毕竟还有亲缘关系的。在此我将不多讨论。我也不打算描述在胎儿期及幼年期脑的发育过程。当然,这些都是有助于我们了解成熟脑的重要课题。一般说来,基因(以及正在发育中由基因控制的后天过程)似乎规定着神经系统主要的结构,但是还需要靠经验不断调整、精炼该结构的许多部件,这是要贯穿整个生命过程的。

  身体的其他部分怎样附属于脑,又如何与之通讯的,这是一个极为明显的事实,却很少有人问津。神经系统就是接收来自身体上各种不同的传感器的信息。所谓传感器就是把化学或物理的影响,如光、声或压力,转换为电信号。

  有些传感器对大量来自体外的信息有响应,像眼睛作为光感受器就是对光产生响应。它们对外界的环境起着监视作用。还有一些传感器对体内的活动有响应,比如:对你患有胃痛或是血液的酸性改变都很敏感。因此,它们也对体内变化起着监视作用,神经系统的运动输出就对身体的肌肉产生控制,脑还影响机体各种化学物质的释放,比如:某些激素。直接同所有的输入和输出有关的外周细胞仅仅占神经细胞总数的很少部分,因此,大量的神经细胞只参与系统内部的信息处理。

  中枢神经系统有各种不同的分区方法,一种简单的方法是把它分为三部分:脊髓、脑干(在脊髓的顶端)以及在其上面的前脑。脊髓接受来自身体的感觉信息,并且把指令传输到肌肉。由于我们关心的是视觉,所以就不进一步讨论脊髓及脑干以下部分。我们主要的兴趣是前脑,特别是新皮层,它是大脑皮层最大的那一部分。

  大脑皮层(通常简称为皮层)分为两片分离的细胞层,分别位于脑的两侧,对人脑来说,这两片神经细胞层总的面积比手帕稍大一点,因此需要充分地折叠后才能容纳在头骨内,神经细胞层的厚度略有变化,一般有2-5毫米厚,它就构成了皮层的灰质。灰质主要由神经元、细胞体和分枝构成,也包括许多称为"神经胶质细胞"的辅助性细胞。皮层中每平方毫米约有10个神经元。①因此,人脑的新皮层中约有几百亿个神经元,它可以与银河系中星星的数目相比较。

  神经元之间有些连接是局域的,一般延伸不到一个毫米,最多也只有几个毫米;但有些连接可以离开皮层的某个区域,延伸一段距离,到达皮层的另一些区域或者皮层外的地方。这些长距离的连接表面覆盖着脂肪鞘,它是由一种称为髓鞘质的物质构成。脂肪鞘能够加快信号的传递速度,同时它还呈现出白色烁光的表面,因此被称为白质。脑中大约有40%是白质,也就是这些长程的连接,这生动而又简明他说明了脑中的相互连接与通讯是如此之多。

  新皮层是皮层中最复杂的部分。旧皮层(paleocorex)为一个薄片,主要与嗅觉功能有关。海马(有时也称为古皮层)是一个令人感兴趣的高层次结构(这意味着它与感觉系统的输入相距较远)。在信息被传送到新皮层之前,对于一些新的、长程的、系列事件中一个事件的记忆编码要在海马中储存约几个星期。

  在脑前部还有几个亚皮层结构与皮层有联系,见图23所示。这里面最重要的一部分叫丘脑,②有时也称之为皮层的入口。因为通向皮层的主要输入必须通过此处,③见图24所示。丘脑通常被分为二十四个区域,每个区域与新皮层的一些特定子区域相联系。丘脑的每个区域与皮层区域有大量连接,并且接受由那里传来的信息。这种反馈连接的真正目的还没有弄清楚。来自新皮层的许多其他连接并不都经过丘脑,这些连接还可以直接通往脑的其他部分。丘脑跨在皮层的重要入口,但不是在主要出口上。

  丘脑不远处有一个发育完善的结构,通常统称为纹状体,见图25所示。尽管它们确切的功能尚不清楚,但这些区域在运动控制中起着重要作用。丘脑的一些特殊区域(统称为层内核)主要投射到纹状体,并且更广泛地投射到新皮层。

  在过去的一百多年来,有关不同精神功能在新皮质上的定位一直存在着争论。一种极端的观点是整体论,认为皮层所有区域的功能大致是一样的,而另一种相反的观点则认为皮层每一小块区域执行着相当不同的任务。

  19世纪的早期,维也纳的解剖学家弗朗兹·约瑟夫·加尔(Franz Joseph Gall)相信脑功能的定位,他用各种富于奇异的属性来标记头骨的各部分(例如:崇尚、仁爱、尊敬等),而这些属性在皮层均被认为是定位的,见图26所示,带有这些标记的像陶器的人脑模型现在依然存在。加尔认为通过研究头骨的隆起,就能推导出一个人的许多特性。当我还是一个小孩时,当地的一个算命先生为骗取我母亲的钱而要相我头骨的隆起。他宣称我的头骨隆起非常有意思,但还需要付额外的钱,他便可以更详细地研究它们。但我从未发现他推演出的有关特性。

  虽然加尔是第一个重要的脑功能定位的鼓吹者,但其具体的思想是完全错误的,结果使皮层定位在医学界留下了一个很坏的名声。现在,通过对猕猴皮层详细的研究,同时也来自人脑资料的支持,我们认为皮层存在着某种程度上的功能定位,但具有明显不同性质的皮层区域共同参与大多数精神活动,因此,不能把定位的思想极端化。

  用一个小的有机分子的特性,比如糖或维生素C,作个可能有用的类比。每个原子的定位都与其他原子有关,每个不同的原子都有其本身的特性——例如,氧原子就极不同于氢原子。尽管有些原子通常比另一些原子更重要,而分子的整体特性又依赖于构成该分子的那些原子之间的相互作用,有时链接原子的那些电子是完全地被定位的。有些情况下,例如像苯之类的芳香族化合物,一些电子分布在许许多多原子上。

  因此我们可以绘制一幅新皮层的略图,并根据它们主要的功能标记在不同的区域上,见图27所示。视觉区域定位在头的后部,见图23所示,听觉区域定位在头的两侧,而触觉区域位于头的顶部。就在体感区域的前面是控制随意运动输出的区域,也就是说这些区域的意欲性指令控制着肌肉的运动。前脑区的确切功能还没有定论,或许它们是负责作计划的,特别是作长时间的计划以及完成一些高层次的认知任务。前脑区中的一个小区域可能参与眼睛的自主运动。

  广为人知但也非常奇怪的是皮层的左边却大部分与身体的右侧直接相关。①一束称为"胼骶体"的神经纤维,将皮层的两个区域连接在一起。在人脑中,胼胝体约有五亿条神经纤维,它们是双向传输的。

  人类具有独一无二的语言功能。对所有惯用右手与大多数惯用左手的人,语言区主要位于脑的左侧。至少有两个主要区域与语言有关。一个区域位于脑后侧,称为"威尼科(Wernicke)区",另一个在刚刚被发现时,称为"布洛克(Broca)",它近于脑前方侧边,离主要运动区不远。至今,它们当中没有一个区域已得到详尽的了解,主要原因是没有动物具有如此高度发达的语言,而动物正是我们了解大脑的主要实验材料。在这两个区域附近还存在着一些其他区域,尤其是皮层的额叶区,它也参与了语言的处理(见第九章)。我确信一定能够证实,包括布洛克与威尼科区在内每个这样的大区域都是由许多独特的小的皮层区域构成的,并以复杂的方式连接在一起。

  当头的左侧受到猛击,则会导致身体右侧部分瘫痪,同时还会干扰言语的表达能力,然而未受损伤的右脑也许仍能发誓,甚至能演唱,此外,这样的一个人也许仍然能够分辨男性与女性的声音。如果右脑受损伤,这后一个功能也许会丧失。尽管演唱音乐的能力已丧失,但讲话的能力依然完好无损。

  这些例子说明了两点:在脑中确实存在着某种程度上的功能分区,但究竟哪些被定位了并不如人们所猜测的那样。

  在皮层外部有一个称为下丘脑的区域,见图23所示,对身体的许多运作是至关重要的,它具有许多小的亚区,而这些小的亚区的主要功能是对饥饿、口渴、温度、性行为及类似的身体运作起调节作用。下丘脑与垂体有密切的连接。垂体是一个将各种激素分泌到血液中的微小器官。

  小脑是一个较大、也很引人注意,但并不算重要的脑区,它位于头的后部。在某些鱼类中,比如:电鱼、鲨鱼等,小脑高度发育。它可能参与了运动的控制,特别是一些技巧的运动。然而,天生没有小脑的人也可能正常地活着。另一个位于脑干的重要区域是网状结构。它们具有许多紧密相互作用的区域,它们的功能仅仅部分得到了解。这个区域的神经元控制着苏醒与睡眠的各个阶段。一团团这样的神经细胞可发送信号到前脑的各个部分,也包括新皮层,例如,一小团被称为蓝斑的神经元发送信号到包括皮层在内的各个地方。这些神经纤维可以从皮层的前区延伸到后区。在这个通路上,与其他神经细胞形成千千万万的连接。蓝斑确切的功能还不清楚。在睡眠的快速眼动期(REM),即我们大多数的梦发生在这期间,蓝斑的神经细胞基本上变得不活动。这种不活动有可能把一个记忆放人一个长期存储器中,也可能有助于解释为什么我们不能回忆起做过的大多数梦。

  在脑干的顶端有一对结构对视觉系统是重要的。在蛙这样低等的脊椎动物中,这对结构叫作视顶盖,而在哺乳动物中称为上丘,它们或许构成了青蛙视觉系统的主要部分。但在哺乳动物中(特别是灵长类),这个角色就由新皮质担任了。在哺乳动物中,上丘主要与眼睛的运动有关,特别是眼睛的自发运动。

  与我们身体其他器官相比,人脑不是个单一的结构。像心脏、肝、肾、胰具有极不相同的功能一样,大脑的各个区域也具有特定的功能。然而,身体中不同的器官有非常密切的相互作用,肝是造血器官,而心脏是泵送血液的。同样在大脑中也存在着许多的相互作用,参与运动控制的不仅有脊髓,而且还有在它上面的许多区域,例如运动皮层、纹状皮层与小脑。参与视觉的有上丘、丘脑的视觉部分与视皮层,它们必须各司其职。

  从广义上说,我们对身体的绝大多数器官的主要功能以及每个器官究竟是怎样实现其功能的已有相当的了解。举一两个例子可以说明这些知识还是相当新的。当我在40年代末,开始研究生物学时,胸腺的功能还不清楚,甚至没有人会猜测出它在我们的免疫系统中起着关键作用。我最初了解它是由于小牛的胸腺是DNA一个方便的来源。遗憾的是我们对大脑的不同部分了解仍处在相当初级的阶段。丘脑、纹状皮层、小脑的确切功能是什么呢?我们只能对它们的行为作一般的概述。而详细的了解有侍于进一步的研究。我们对海马的功能也只有一个粗略的了解,但对其确切的功能没有统一的认识。这一切都有待于进一步的发现。

  从最高层次的角度描述了什么是大脑后,让我们进入低层次的结构,看一看视觉系统中的主要构成及单个神经细胞。

  ①灵长类动物的第一视区是例外,它有大于两倍这个数目的神经元。

  ②丘脑这个词来自于希腊语,它的意思是内房,即洞房的意思。视觉丘脑的一大部分被称为枕叶,这个词的原意是枕头。

  ③对脑干和其他一些稍有些扩散的系统不是这样的。

  (1)嗅觉是个例外,鼻子的右侧连接到大脑的右侧。

  "脑的功能不可能与它的基本单元——神经细胞一的功能完全没有联系。"

——伊丹·赛杰夫(IdanSegev)

  由于"惊人的假说"强调了""就是大量神经元行为的体现,因此,你应该对神经元以及它究竟做些什么有个粗略的了解。尽管神经元的种类繁多,但其大多数都好像按照同一幅蓝图构建的一样①一个典型的脊推动物的神经元对于施加在它的胞体、枝体——它的树突(见图28所示)——上的电脉冲刺激具有三种响应模式:有些输入使它兴奋,有些使之抑制,还有的可以对它的行为进行调制。当神经元变得相当兴奋时,它就会将一个峰形的电脉冲下行传至它的输出电缆,即轴突,这样一根轴突通常也有许多分枝。电信号将沿着各个分枝及小分枝传输直至与其他神经元相联系的轴突,它也会对其他神经元的行为产生影响。

  这就是神经元的主要工作。它通常是以电脉冲形式接收来自许许多多其他神经元的信息。实际上,它就是对这些输人进行复杂的动态加和,然后把处理后的信息以电脉冲流的形式沿着它的轴突传输到许多其他的神经元,虽然神经元为了维持这些活动及合成分子需要能量,但它的主要功能就是要接收和发送信号,简而言之,就是处理信息。一个类似的情况是:一个政治家会不断地收到来自那些想让他投票赞成或反对某一项措施的人士们的信息一样,当他在表决时就必须考虑所有这些信息。

  在没有任何信号时,神经元通常也会沿着轴突以相对较慢、无规则地传送背景脉冲。这种发放率一般是1-5赫兹(1赫兹表示一秒中有一个脉冲或一个周期)。这种连续的"易激动"活动状态,可以使神经元处于警觉点,并随时对新的刺激做出更强烈发放的准备。由于神经元接收许许多多兴奋的信号,使它处于兴奋状态,则它的发放率就会增至一个很大的值,典型的为50-100赫兹或更高。在短时间间隔内,发放率可达到500赫兹,见图29所示。1秒钟内有500个脉冲,乍听起来觉得很快,但把它与家用电脑的处理速度作一比较,它是极慢的。如果一个神经元接收一个抑制性的信号,它的电脉冲输出可能比正常的背景发放率更少些。但这种减少是那么小,以至于它只能传送相当少的信息。神经元只能沿着轴突下行传送一类信号。当然没有""的峰电位。而且,这些电信号一般从胞体沿着轴突单向下行传输,直至这些轴突的终端。①

  神经元是什么样子的?它是由什么构成的?在许多方面,神经元类似于人或动物体内的其他细胞。它的许多基因由DNA构成,而DNA位于细胞内一个被称为"细胞核"的特殊结构中的染色体上。细胞体内还有其他一些特殊结构,它们(例如:细胞的能源基地——线粒体)具有自己的DNA。体内几乎所有细胞都有两套基因信息的复制品,①分别来自每个母体。每一套都约有10个不同的基因。②并不是所有的基因都在所有的细胞中活动。有些在肝脏的细胞中更活跃,有些在肌肉细胞中更活跃,等等。一般认为,在脑中各个部位的基因比任何其他器官中所具有的基因都更加活跃。

  这些基因的大多数对某种或另一种蛋白质合成的指令进行译码。如果把每个细胞看作一个工厂,那么蛋白质就是使这个工厂进行运转的快速而又精巧的机械工具。蛋白质一般的体积通常是细胞体积的十亿分之一,它是如此的小,用光学显微镜都无法看到。但它的形状(不是其近乎原子结构的精确细节)有时还能够用电子显微镜观察到。每一种蛋白质都具有它自己极为精细的特定分子结构,它们是由成千上万个原子按照各自独特的方式连接在一起的。生命中起关键作用的分子正是以原子的精确性而构筑起来的。

  细胞中的所有东西被包容在有点流动的类脂膜内,这层膜能阻止蛋白质和它们的产物离开细胞,膜上的一些蛋白质好比灵敏的门或泵,控制各种分子进出细胞。整个细胞结构是由那些有机的分子构成,且具有灵敏的控制部件,以便使细胞可以进行自复制,并且与体内其他细胞有效地进行相互作用,简而言之,在如此小的空间内,竟发生如此奇迹般的化学反应,这是经历了儿十亿年自然选择进化的结果。

  神经元与体内的其他细胞泅然不同:成熟的神经元既不会移动,也不会聚在一起和发生正常的分裂。如果一个成熟的神经元死后,(除极少外)它不会由新的神经元代替。与许许多多其他细胞相比,神经元的外形更具刺突形。神经元树突的分枝随其不同的类型各异,但它通常有几个主要的分枝,而每个分枝又可分成几倍之多的小分枝。细胞体(常称为胞体)可长成各种不同大小,一般其直径约为20微米。①

  在新皮层中最常见的一类神经元叫作锥体细胞,它的胞体稍像角锥,在顶部有大量的树突,见图30所示。其他神经元,例如星状细胞,在各个方向上都有分枝,见图31所示。

  神经元的轴突(输出电缆)可以非常长,例如,像你的脊椎柱能有几英尺长,否则你就无法摆动你的脚趾(记住一个神经元胞体的半径很少有大于千分之一英寸)。没有脂肪髓鞘包着的轴突的直径通常很小,一般在0.1-1微米范围内。轴突外面包着脂肪髓鞘,它的电脉冲传输速度要快于不带髓鞘的。

  轴突中的峰电位并不像导线中的电流。在金属导线中,电流是由一团电子携带的。在神经元中,细胞绝缘膜上有蛋白质构成的分子门,电效应依赖于通过分子门进出轴突的那些带电离子。由于离子来来回回的运动使跨膜的局域电位发生变化。正是电位的这种变化要下行传输到轴突。这个信号要不断地更新,需要补充能量。因此,沿着轴突下行传输的脉冲不会衰减,而且它的形状和幅度在终点与起始点大体相同。这样的一个特性就使得峰电位在被传送很长的距离后,还能对与轴突未端相联的神经元产生明显的作用。

  在19世纪,人们错误地认为峰信号的传导速度很快,以至于无法测量,或许是以光速传播。在上个世纪中叶,由亥姆霍兹(Helmholtz)最终测出这个速度,才发现它很少有超过每秒30英尺的(这个速度约为声音在空气中传播速度的三分之一)。当时包括亥姆霍兹父亲在内的许多人对这个结果感到非常惊讶。对没有脂肪鞘的轴突,它的速度一般为每秒5英尺,这个速度看上去相当低(实际上,它比自行车的速度还低),它等价于每毫秒行走15毫米。

  轴突的远端需要得到来自胞体分子的给养,因为几乎所有的基因与大多数用于蛋白质合成的生物化学物质都在胞体内,而不在轴突内。沿着轴突存在着双向的系统的分子流动。观察用高倍放大的光学显微镜拍摄的这种分子的流动是极不寻常的,它展示出小的粒子彼此缓缓地行进着,有些下行到轴突,有些是上行至胞体;有些行进速度稍快些,有些则不然。但是,所有这些流动的速度都远远低于轴突中峰信号的传播速度。很自然,为指挥和控制这种运输,就需要有特殊的分子部件参与工作。

  神经元经典的观点认为树突(输入电缆)是"被动的",这意味着当电位从树突的某个位置传到另一个位置时,它是衰减的。原因是一些离子漏过了细胞膜而引起的,就像摩尔斯电码信号沿着横穿大西洋的电缆行进了相当长的距离后,常常也会衰减一样。正是这个原因,树突一般比轴突短,通常它的长度仅有几百微米。现在有种猜测,认为有些神经元在树突中也存在着主动的过程,但是它们或许并不与轴突中发现的完全一样。

  电脉冲沿着轴突向下一直传输到神经元之间的特殊的连接处——突触。每个神经元在它的树突与胞体上有许许多多突触。一个小的神经元约有500多个突触,一个大的锥体细胞可多达2万个。新皮层中每个神经元平均约有6000个突触。由于峰信号是电信号,对下一个神经元的作用主要也是电的,因此,可能会认为突触也是某种电接触。其实,有些突触是电接触,但更普遍的情况是神经元之间的信号传递要比电传导复杂得多。

  实际上,两个神经元不是直接连接在一起的。从电子显微镜拍摄的照片中容易看到,见图32所示,在两个神经元之间有一条明显分界的裂隙,约为四十分之一微米宽,这条裂隙被称为突触裂隙。当电脉冲到达突触前侧时,它能使一小包的化学物质(称为囊泡)释放到突触裂隙中。这些小的化学分子在裂隙中迅速扩散,其中的一些与突触后细胞膜上的分子门结合,使这些特殊的门打开,且允许带电的粒子流入或流出突触后膜,以使跨膜的局域电位发生了变化。整个过程如下所示:

  电-化学-

  一般说来,离子的流入或流出依赖于离子在神经元内外浓度的高低。通常,钠离子(Na+)在神经元内保持低浓度,而钾离子(K+)在神经元内保持高浓度。这是由细胞膜上特殊的分子泵来完成的。如果一个门开启,两种离子都能通过,那么钠离子将会流入,而钾离子将会流出。①

  当没有峰电位时,神经元有一个跨膜的静息电位。这个电位一般是-70毫伏(指里面相对于外面),在胞体上一个正的电位变化(例如电位到达了-50毫伏)有可能使细胞发放;而一个负的电位变化完全阻止其发放。一个神经元是否能兴奋起来,以使它在轴突上产生一个峰电位,主要依赖于这些膜电位的变化(由位于树突和胞体上的兴奋性突触产生)能否引起轴突始端附近区域电位的变化。

  让我们更仔细地看一看突触的结构,见图33所示。在皮层中它主要有两种类型,称之为1型或2型。在电子显微镜下可以清楚地将它们区分开。①一般他说,1型突触使接受神经元兴奋,而2型使其抑制。

  在大脑中,大部分兴奋性突触不是直接位于树突的主干上,而是位于一些短小的侧枝上,见图34所示,这些侧枝称为棘(spine)。尽管有些棘上也有单个2型(抑制性)突触,但单个棘上从不会多于一个1型(兴奋性)突触。从图34中可以看到,一个棘有点像小烧瓶,它的颈被粘在树突上。棘有一个球形的头(通常稍有畸变)和细圆柱形的颈。突触本身位于其头部,并且在一定程度上与这个细胞在其他位置发生的活动相分离,突触有许多受体,其中也包括了离子门。如果神经递质的分子(来自于突触未端与棘头之间的突触裂隙)处于这种受体分子的某一特殊位置,就能打开离子门。

  棘是一个相当精巧的结构,它的功能远未完全了解。我猜测棘是进化的关键产物,有了它,可以对输入信号进行更为复杂的处理。

  我不想去描述神经元的脂肪膜上各种类型的蛋白质分子。其中一些分子能被递质分子激活,①它们被称为"受体"。在大脑的新皮层中,主要的兴奋性递质是一种相当普遍的称之为谷氨酸的小有机分子。(2)虽然离子通道仅有两种主要类型(一类仅对电压敏感,另一类仅对神经递质敏感),但最令人感兴趣的是第三类被称为"NMDA通道"的离于通道。③它对电压与谷氨酸都敏感,更精确他说,即便存在着谷氨酸,当局部的膜电位处于静息值,该离子通道很少打开的。如果膜电位升高(例如由于附近其他兴奋性突触的活动),那么谷氨酸可以打开这个通道。因此它仅对突触前的活动(由于轴突末端释放谷氨酸)与突触后的活动(由于其他的输入产生了跨膜电位的变化)的联合作用起反应。我们将会看到,这是脑功能的一个关键特性。

  当NMDA谷氨酸通道打开时,不仅允许钠、钾离子通过,而且也有适量的钙离子(Ca2+)通过,这些流入的钙离子像是这样一种信息的出现,即它能引发复杂的化学连锁反应,目前对这类反应仅获得部分的了解,它最终的结果是改变了突触的连接强度,这种改变可能维持几天,几个星期,几个月,甚至更长的时间(这可能就构成了一种特殊记忆形式的基础——见第十三章描述的赫布学习率)。我们现在可以从分子的水平来解释认知过程,例如记忆。一个实验的例子:用化学的方法阻断小鼠海马中的NMDA通道,小鼠不能记住它到过的地方。

  抑制性突触的性质如何?是否存在这样的神经元,它的轴突的一些末梢产生兴奋性的作用,而另一些产生抑制性的作用?令人惊奇的是,在新皮层中从未或很少存在这种现象。更确切他讲,一个特定神经元轴突的所有末梢或都兴奋或都抑制,从未有两者并存的情况。上面提到,兴奋性突触的神经递质是谷氨酸,而抑制性突触的递质是相对较小的GABA分子(1)。在新皮质中,约有五分之一的神经元释放GABA递质(2)

  大多数突触传递是化学的而不是电的,这样一个事实就产生了重要的后果,即一些特殊的小分子在浓度非常低的情况下也阻断它。这就是为什么剂量只有150微克的LSD能引起幻觉的效果。这也能解释为什么一些药在一定条件下能缓减精神状态,例如沮丧,看上去是由于某些神经传递机制的功能衰退而引起的,例如:安眠药中的化学物质结合了GABA受体,增强了GABA的抑制作用功能。这种突触抑制的增强有利于促进睡眠。镇静药利眠宁与安定也是苯二氮卓(benzodiazepine),有类似的功效。

  在新皮层中,兴奋性与抑制性不是对称分布的,但一些理论模型假设它们是对称的。从皮层的一个区到另一个区的长距离连接只能通过锥体细胞来实现。这些细胞都是兴奋型的。大多数抑制性神经元的轴突较短,仅影响它附近的神经元。①没有任何两个形态结构类似的神经元(可能有极少数的例外),会产生一个是兴奋的,而另一个是抑制的现象。整个分布的非对称性至少表现在两个方面:一个方面是神经元不能发放负的峰电位,另一个方面产生兴奋或抑制的神经元属于不同的类。然而、所有的神经元都接受兴奋性或抑制性的输入,这可能为了防止神经元总处在静息状态或永不停息的发放状态。

  在新皮层中主要有两类神经递质:兴奋性的谷氨酸递质(或相近的物质)和抑制性的GABA递质。遗憾的是,事情并不那么简单,存在着许多其他的神经递质。脑干中那些投射到皮层的神经元用5一羟色胺、去甲肾上腺素、多巴胺等为递质。脑中其他神经元用乙酰胆碱作为递质,约有五分之一的抑制性神经元在释放GABA的同时,也释放一种更大的有机分子——肽。这些递质大多数产生的效应要比两类主要的快速递质(谷氨酸和GABA)慢。它们通常用于调制细胞的发放强度,而不是直接使它发放。这些递质主要可能参与更一般的过程:例如保持皮层清醒,或者要记住什么,而不是参与大量复杂的信息快速处理过程。

  不仅存在有多种神经递质(尽管只有两种神经递质完成了大部分工作),而且还有多种离子通道。至少有七种不同类型的钾离子通道,且大多数还是相当普遍的。②有些通道能迅速打开,有些则缓慢打开;有些通道一旦打开就迅速失去活性,有些则较缓慢关闭:有些通道主要传递轴突上的电脉冲,有些则在胞体与树突上产生更精细的效应。为了计算神经元对输入信号所产生确切的行为变化,我们需要知道这个神经元所有的离子通道分布与特性。

  不同的神经元有不同的发放模式。有些神经元的发放非常快,有些则很慢;有些神经元发放单个脉冲,有些则倾向于发放一簇脉冲。在有些情况下,同一个神经元可以用以上两种方式中的任何一种发放,主要依赖于它的活动状态和当前的行为。动物在慢波睡眠(无梦的深度睡眠状态)与清醒状态时,神经元发放的模式是不一样的,主要的原因是脑干中的神经元对丘脑与新皮质产生了不同的影响。我们最终是需要更加深入地和更全面地了解各种类型神经元的信息处理过程。

  从表面上看,神经元显得异常地简单,它对众多的输入信号的响应是通过沿着它的轴突发送出一串电脉冲。只有当我们试图准确地刻画它是怎样反应的,这种反应是怎样随时间而变化的,以及它又如何随着脑中其他部分的状态而变化的,这才真正遇到神经元内在的复杂性。显而易见、我们又需要理解这些化学及电过程是怎样进行相互作用的,然后需要去掉这些过程的具体细节,用一种近似、可操作的方式来处理它们。简而言之,我们就需要建立各类神经元的简化模型,它们既不能太复杂而难以操作,也不能大简单而忽略了它的重要的特性。这可谓说起来容易作起来难。单个神经元有点像个哑巴,它能用很巧妙的方式表达着它的意思。

  神经元有一个相当明显的特性,这就是单个神经元具有不同的发放率,从某种角度来说,它具有不同的发放模式。尽管如此,在任何一段时间内,神经元只能发送出有限的信息。然而,神经元在这段时间内通过许许多多的突触而得到的潜在的信息是很大的。当我们孤立地看一个神经元时,这种输入与输出之间的转化过程必定要丢失信息的。然而这种信息的丢失可以用下面的方式得到补偿,即每个神经元对输入的特定组合的反应和传送出这新的信息形式,恰恰不是传送到一个地方,而是到许多地方。因此,由于单根轴突上有许多的分枝,沿着轴突下行传导的电脉冲是以相同的模式被分布在不同的突触上。一个神经元在它的某个突触上接收到的信息与其他许多神经元接收到的是一样的。所有这一切表明了:在某一时刻,我们不能仅仅单独考虑单个神经元,而必须考虑许多神经元综合的效果。

  认识到这样一个事实是很重要的:一个神经元仅能简单地告知另一个神经元它的兴奋程度。①这些信号不给接受神经元其他的信息,例如:第一个神经元的位置等。②该信号中的信息通常与外部世界的某些活动相联系,例如,由眼睛光感受器接收的信号。

  从感觉上讲,大脑所获得的通常是与外部世界或身体其他部分有关的信息。这就是为什么我们所看到的那些东西都位于我们的外部,尽管负责担任""的神经元位于脑中,对许多人来说,这是个根深蒂固的观念:"世界"位于他们的身体外,然而从另一种角度来看(他们所知道的),世界又完全位于他们的脑中。这对你的身体来说也是正确的,你对它所了解的不是附于你的头上,而是位于你的脑中。

  当然,如果我们打开头骨把某个神经元发放的信号取出来,一般能判断该神经元的位置。但是我们所研究的大脑并不知道这种信息。这就解释了在正常情况下,为什么我们不能知道感知与思考发生在脑中的确切位置。不存在这样的神经元来编码这种信息。

  回忆一下亚里斯多德认为这些过程都发生在心脏中,因为他既可以知道心脏的位置,又可观察到一些精神活动过程。

  但这种传送速度大慢,以致不能携带快速的信息。恋爱中在行为上发生的变化。如果不借助特殊的仪器,我们就不能对人脑中的神经元做类似的实验。这些及其他的有关内容将在下一章中介绍。

  ①我将会集中讨论在脊椎动物(像人类)所发现的"典型"的神经元,这些神经元在无脊椎动物中(例如昆虫)几乎没有什么区别。

  ①对人工神经网络说,信号可以沿着反方向传输,称为逆向。

  ①红细胞是例外。

  ②目前还不清楚它更精确的数目,但到2000年左右或许将会知道。

  ①它的体积比一个细菌的细胞如大肠杆菌(E.Coli)约大1000倍。

  (1)这种解释是过于简化了,因为高子的流动还依赖于跨膜的电位差。

  ①1型突触具有圆形的囊泡,而2型的囊泡通常呈椭圆型或扁平状的,2型比1型更具对称性,且它的突触裂隙要小些。(l)有些仅对跨膜电压的变化有响应,有些仅当某些特殊的小分子——神经递质——与膜外的蛋白质相结合时有响应。有些蛋白质具有离于通道,它能迅速地打开,让离子通过去,有些不具有这些功能。它们在细胞内通过间接的方式产生慢效应,就是具有神秘色彩的第二信使。

  ②谷氨酸是构成蛋白质的二十种氨基酸中的一种,它有时被用来放在食物中以增加香味。

  ③这类受体的基因已被分离出来。

  ①主要有两类GABA受体,A型是一个快速的离子通道,它允许氯离子通过,D型受体速度较慢,是第二信使系统的通路。

  ②当成熟后,这种神经元在树突上很少或没有棘,它们的突触直接位于树突或胞体上。它们一般比具有棘的兴奋性神经元发放更快。有几种相当不同类型的抑制性神经元,但详细地描述它们已超出了本书的范围。

  ①有一种"篮状细胞",能在某个皮层区内有相当长的抑制性连接。

  ②例如.一个称IC的钾离子通道,能被钙离子的内部浓度激活。

  ①除了编码平均发放率外,发放模式中也可能包含另一些信息。

  ②神经元能够沿着轴突发送化学信号。在一些情况下,它们能传递额外的一些信息。

  "研究是一门艺术,即如何设计一些方案去解决那些难题的艺术。"

——彼得·梅达沃爵士(Sir Peter Medwar)

  严格地说,每个人所能确信的只是他自己是有意识的。比如说,我知道我是有意识的。在我看来你的行为举止与我很相似,特别是你使我相信你是有意识的,故而我很有把握地推断你也是有意识的。倘若我对自己的意识的本质感兴趣的话,我就不必仅仅把研究局限在自己身上,而完全可以在别人身上做实验,只要他们不是处于昏迷状态。

  要揭示意识的神经机制仅仅靠对清醒的受试者进行的心理学实验是不够的。我们还必须研究人脑中的神经细胞、分子以及它们之间的相互作用。我们可以从死者的脑中获得关于脑结构的大部分信息。但要研究神经细胞的复杂行为,则必须在活体上做实验。实验本身并不存在什么难以克服的技术问题。更多的是由于伦理道德方面的考虑使得许多这样一类实验变得不可能,或是十分困难。

  大多数人并不反对在他们的头皮上放置电极来测量脑电波。但是为了直接把电极插入活体脑组织而要移去部分头骨,即便这只是暂时的,也是众人所不能接受的。即便有人甘愿为了科学发现而接受开颅实验的话,也不会有医生同意实施这种手术。他会说这是违背其希波克拉底誓言的,或者更有可能说会有人为此而控告他。在我们这个社会里,人们会自愿参军并不惜受伤甚至牺牲,却未必会愿意仅仅为了获取科学知识而接受那些有危险性的实验。

  有少数勇敢的研究者在他们自己身上做实验。英国生物化学和遗传学家霍尔丹(JBSHaldane)就是一个著名的例子。他甚至写了一篇关于这方面的文章,名为《作自己的实验兔子》(On Being One's Own Rabbit),此外还有一些医药史上令人传颂的故事,如罗纳德·罗斯爵士(Sir Ronald Ross)在自己身上证明蚊子传播疟疾。但除此以外,为那些可能有助于满足科学好奇心的实验去充当受试者,这是不被鼓励的,甚至是被禁止的。

  在某些情况下,必需对一些病人在清醒状态下做脑部手术。这样,如果病人同意,便可在裸露的脑做一些很有限的实验。由于脑中没有痛觉感受器,病人不会因为裸露的脑的表面受到轻微电刺激而感到不适。遗憾的是,在手术中可供做实验的时间通常很短,而且也很少有神经外科医生出于对脑的细微工作感兴趣而进行这种尝试。这种研究是在本世纪中期由加拿大神经外科医生怀尔德.彭菲尔德(wilderPenfield)开创的。近一个时期西雅图的华盛顿大学医学院的乔治·奥杰曼(George Ojemann)领导进行了该领域的研究。他用短暂的刺激电流抑制电极附近的一小块区域内神经元的活动。如果电流足够微弱,去掉后并不会造成永久的影响。他将精力集中在与语言有关的皮层区域;这是因为当他切去患者的部分大脑皮层以降低他们癫痫病发作的可能性时,他希望尽可能少地使邻近的语言区受到损伤。

  奥杰曼有一个实验结果很出名。患者自幼会讲英语和希腊语。当大脑左侧新皮层表面的一些区域受到电刺激时,她暂时无法使用某些英语词汇,但这并不影响她使用相应的希腊语,刺激其他部位则会出现相反的情况,这表明两种语言的某些特征在脑中的定位有显著的差异。

  在大多数情况下,我们只能从头骨外研究人脑的行为活动。①现在已有多种不同的扫描方法可以获得活体脑的影像,但它们在空间或时间分辨率上都有很大的局限性。大多数方法过于昂贵,并且出于医学上的考虑被限制使用。

  因此,神经科学家们优先选择在动物身上做实验便不足为怪了。虽然我并不确信一只猴子也像你一样有意识(consciousness),但我有理由认为它并非完全是一个自动机,即那种行为复杂但完全缺乏觉知(awareness)的机器。这并不是说猴子与人一样具有自我觉知(self-awareness)。一些实验,如镜中识别的实验等,表明某些类人猿(如黑猩猩),可能具有一定程度的自我觉知。而对猴子而言,即便有自我觉知,那也很少。但仍有理由大胆断言猴子具有一种与人类相似的视觉意识,只不过它无法用语言来表达而已。

  例如,可以训练猕猴让它鉴别两种非常相近的颜色。这些实验表明,猕猴的表现与我们人类是可以相比的,大约在2倍以内。而对于主要在夜间活动的猫则远非如此,大老鼠则相差更大。由于黑猩猩和大猩猩过于昂贵,很少用它们做伤害性实验,如果我们主要关心的是哺乳动物脑中的分子特征,那么作为实验动物大老鼠和小白鼠是最好又是最便宜的。虽然它们的脑的特征在许多方面比人类要简单,但是脑的分子却可能与我们非常类似。

  用猴子和其他哺乳动物而不用人做实验还有个优越之处,即目前它们更适于用来进行神经解剖学研究。原因很简单。几乎所有现代的关于脑中长程连接的研究方法部利用了神经元中分子的上行和下行的主动运输。为此需要把某种化学物质注射到动物活体脑中的某个部位。该物质在脑中沿着神经元之间的连接被运送到与注射点直接相连的脑的其他部位。这一过程通常需要几天时间。此后,实验动物将被无痛苦地杀死,并检测注射物质所到达的部位。用人做这种实验显然是不可能的,由于这种局限使得我们对猕猴脑的长程连接的了解远比对我们自己的了解丰富得多。

  人们或许认为,这种知识上的明显的空白会使神经解剖学家忧心忡忡;由于人脑与猕猴的脑并不完全相同,他们会特别要求研究人体神经解剖学的新方法,然而事实并非如此。其实,现在是改变我们在人体神经解剖学上的缺陷的时候了,那些有远见的基金会应当立即着手从事有关的新技术的发明。

  即使我们设计出可以在人身上进行神经解剖学研究的新方法,仍有许多关键性实验只能在动物身上进行。这些实验有时会持续几个月。尽管大多数实验没有什么痛苦,或只有很少的痛苦,但实验结束后常常需要把实验动物杀死(仍旧是无痛苦的)。动物保护组织坚持要求善待实验动物,这无疑是对的。由于他们的努力,实验室中的动物现在得到的照顾比以前要好一些,但是,倘若把动物理想化,那就太多愁善感了。与被捕捉的动物的生活相比,野生的食肉和食草动物通常过着严酷的生活,寿命也较短。有一种观点宣称由于人和动物都是"自然的一部分",因而应当完全平等地对待他们。这是没有道理的。难道一只大猩猩真的应当享受大学教育吗?一味坚持完全像对待人类那样对待动物,这种说法贬低了我们人类所独有的能力。动物应当受到人道的待遇,但若将它们置于同人平等的地位,那则是一种扭曲的价值观。

  作为神经解剖学和神经生理学的实验对象,猴子有什么局限性呢?训练机灵的猴子完成一些简单的心理学测试是可能的,但这很费力。有个实验要求猕猴保持凝视(即注视同一点)。当它看到水平线段时按动某一控制杆,而看到垂直线段时按动另一控制杆。这样的训练通常需要几周甚至更长的时间。而让大学毕业生来做这个实验则多么简单!此外,人作为受试者可以用语言来描述他们所看见的一切。他们还能告诉我们他们所想像到的或是梦见的情景。而要从猴子身上得到这种信息则几乎是不可能的。

  看来只有一种策略是可行的。这就是分别在人和动物上做某些不同类型的实验。这需要假设猴子的脑与人脑的相似程度(以及差异性),但这尚有一定的风险。没有风险就不能取得大的进展。因此,我们既要大胆地按此方法进行研究,又应足够谨慎,尽可能地经常检查我们的假设是否合理。

  研究脑波的一种最古老的方法是脑电图(EEG)。它将一个或多个粗电极直接放在头皮上。脑中有大量的电活动信号,但是头骨的电学特性干扰了对电信号的提取。单个电极将提取多至上千万个神经元产生的电场信号,因而单个神经元对电极贡献的信号淹没在它临近的大量神经元的活动中。这就好像试图从1000英尺高度上研究城市中人们的谈话一样。你能听到足球赛场中人们的叫喊声,却无法判断那里人们用何种语言交谈。

  脑电图最大的优越性在于时间分辨率相当高,大致在1毫秒左右。这样便可相当好地记录到脑波的上升和下降。人们尚不太清楚这些波意味着什么。处于清醒状态与处于慢波睡眠状态的脑波有非常显著的差异。快速眼动睡眠时的脑波与清醒时很相似。因而它又有个别称——反常睡眠,即人处于睡眠状态,但他的脑看上去却是清醒的。我们的梦幻大多出现在睡眠的这一阶段。

  有一种常用的记录脑波的技术是在某种感觉输入(如耳听到的一声尖锐的卡搭声)之后立刻记录。与背景的电噪声相比,由刺激引起的反应通常很小(即信噪比很低)。因此,从单独一次反应中几乎看不出什么,实验必须重复多次,并以每次事件的开始作为基准对所有信号进行平均。因为噪声总是被平均掉,所以这样可以提高信噪比,并通常可得到一条可完全重复的典型的脑电波曲线,它是与脑的活动相关联的。例如,反应中常存在着一个被称为P300的尖峰,其中P表示正电位,300代表给刺激信号与尖峰之间有300毫秒的时间间隔(见图35)。它通常与某些令人吃惊并需要注意的事件有关。我猜测它大致是从脑干传向记忆该(刺激)事件的高层脑区的一种信号。

  遗憾的是,要确定产生这种事件相关电位的神经活动的位置是件困难的事。问题在于,如果我们知道每个神经元的电活动,从数学上讲就能计算出放置在头皮上任意位置的电极上的效果。反之,从电极上得到的电活动却无法计算出脑中所有部位的电活动。从理论上讲,可以在头皮上产生同样的信号的脑活动分布几乎有无穷多种。尽管如此,即便我们不可能恢复出神经活动的全部细节,但仍希望对大部分这些活动发生的部位有所了解。通过在整个头皮上放置一定数目的电极,我们可以对大部分神经活动的定位有较好的了解。如果一个电极记录到较大的信号而其他电极的信号都较小,那么大部分神经活动可能发生在记录到大信号的电极附近。遗憾的是,实验中情况要复杂得多(1)。

  从这些事件相关电位中能获得一些很有限但非常有用的信息。举例子说,皮层的听觉部分主要位于脑的颞叶附近。如果一个人生来就是全聋的话,那里的情形会是怎样的呢?有一项研究选择了那些双亲也是耳聋的聋人。这样几乎可以肯定他们的天生的缺陷是遗传引起的,该缺陷可能是在于耳的构造上而不是在脑中。心理学家海伦·内维尔(Helen Neville)和她的同事们通过观察事件相关电位发现,这些患者对视野外周信号的某些反应与听觉正常者相比有一个大得多的尖峰(延迟时间大约150毫秒)。这些增强现象出现在通常与听觉有关的前颞叶及额叶的一部分。

  人们对这种由来自视野外周的信号引起的增强反应并不感到惊奇,因为当聋人相互打手势时,他们的目光主要固定在打手势者的眼睛和脸上。因此,大部分手势信息来自凝视中心的边缘区域。作为对照,内维尔还研究了那些双亲耳聋但本身听觉正常且学习过美国手语的受试者。他们并没有像天生耳聋的被试者所表现出的神经活动的增强现象。这表明学习美国手语并不能引起上述的增强效果。

  内维尔推测,因为完全耳聋者缺乏正常的与声音有关的神经活动,在脑的发育过程中部分视觉系统通过某种方式取代了部分听觉系统。对于具有听觉的人,可能是正常的听觉输入阻止了任何视觉区域取代皮层的听觉区域。目前的动物实验表明这种想法是有道理的。

  一种近代技术研究了脑产生的变化的磁场。这种磁场极为微弱,仅为地磁场的极小一部分。因此,使用了一种称为squids(超导量子相干装置,superting quantum interference devices的缩写)的特殊检测器,并小心地把环境中变化的磁场屏蔽掉,使得整套装置不受干扰。最初仅使用了一个squids,但现在使用一组共37个这种探头。它通常比脑电图具有更好的空间定域性。此外,它的优越性和局限性都与电场相似,只是头骨对磁信号的干扰要小得多。磁探头所响应的偶极子源垂直于产生脑电图的电偶极子,因而能检测到脑电图所丢掉的信号。反之亦然。

  虽然squids探头并不便宜,但进行研究脑波的实验并不十分昂贵。而其他主要扫描方法不仅需要昂贵的仪器,运行的开销也很大。这些扫描设备数目极少,并几乎都归医学机构所有。它们每次只能产生脑的一个片层的活动影像。因而要覆盖某个人们感兴趣的区域,通常需要好几个片层的成像。

  大致来说扫描技术有两种,分别探测脑的静态结构和动态活动。最早的一种技术称为CAT扫描,即计算机辅助X射线断层照相,它利用了调射线,一种较现代的技术——磁共振成像技术(MRI),能产生极好的高分辨率图像。就目前所知,它对实验者的脑不产生伤害。通常的使用中,它记录质子(即氢原子核)的密度,因而对水特别敏感。它得到的图像具有很好的对比度,但该图像是静态的,并不记录脑的活动(见图36)。除此之外,两种方法都清晰地呈现出不同的大脑之间的大致结构的差异。在各自适合的环境下,两种方法均能探测到脑受到打击、枪伤等伤害引起的结构损伤。只不过不同的技术所容易探测到的伤害的种类各不相同。采用一种特殊技术之后,MRI扫描可以产生活体人脑的三维重建,包括外观。图37是神经哲学家帕特丽夏.丘奇兰德的脑的一个侧面。

  正电子发射X射线断层照相术(PET)是一种不同的方法。它可以记录脑的局部活动,但记录的是这些活动在大约一分钟左右时间内的平均值。实验者被注射一种无害的放射性原子(如15O)标记过的化学物质,通常是水。该放射性原子在衰变时会发射一个正电子。①被标记过的水进入血液。15O的半衰期很短,这意味着它从回旋加速器产生到注射人体内必须在很短的时间内完成。但它有两个优点:氧衰变非常快,因而大约十分钟以后就可做第二次实验;放射性物质寿命很短,这意味着为了取得所需信号而使实验者所受的辐射总剂量非常少,造成的伤害是可以忽略的。因而该方法可以用于健康的志愿者,而不必仅限于体弱的病人。

  当脑中一部分的神经活动比平时加强时,供给它的血液也增加。实际上,计算机生成的图像对应于扫描得到的各个部分脑区的血流水平。其他的实验扫描了处于控制状态被试者的情况。两幅图之间的差异与脑处在被刺激状态和控制状态时神经活动的变化是大体一致的。

  这项技术已经得到了大量有趣而又具有挑战性的结果。特别值得一提的是圣路易斯的华盛顿大学医学院马库斯·雷克尔(Mar-cus Raichle)所领导的研究小组。在早期的实验中他们研究了对一小组视觉模式的反应。这些模式是经过选择的,可以在皮层的不同的、相当宽的区域中产生最大反应。在新皮层的初级视觉区域的血流变化与通过早期对人脑的损伤研究中所预料的结果大致相同。此外还发现皮层其他视觉区域的血流也有变化,但它们是否有价值目前尚不清楚。

  他们最近研究了被称为"斯特鲁普干扰效应"Stroopinterferenceeffect)时血流的变化。这是一种更复杂的视觉任务。在实验中要求被试者尽可能快地识别一个单词的颜色。比如说,被捕捉的目标可能是用绿色印刷的红色这个词。词的颜色(绿色)与词义(红色)之间的差异会引起被试者反应时间增加。将这种任务下的血流分布与另一种直接情况(即单词红色被印成红颜色)相比较,他们发现,在斯特鲁普(Stroop)条件下,有几个皮层区域出现了血流增加的现象,其中增长最大的区域是"右前扣带回",它在脑的中部,靠近额部。他们认为这与完成任务所需注意的程度有关。他们由此得出结论:"这些资料表明,前扣带回参与了下述的一种选择性过程:即,以先前形成的一些内部的有意识的计划为基础,在这两种情况中进行竞争性的交替处理。"我感觉这种说法更接近于我们考虑的自由意志,而不是通常意义下的注意(见本书末尾的附言)。很显然,我们需要更多地了解有关的不同处理过程的神经机制。

  PET扫描可以获得一些其他方法很难得到的结果,但它也有若干局限性。除了昂贵以外,其空间分辨率并不很高(虽然它也随多数现代仪器一起逐步改进),目前通常大约为8毫米。它的另一个不足之处是时间分辨率相当差。为了获得好的信号需要大约一分钟,而EEG的工作在毫秒范围。

  一些居主导地位的研究中心目前把PET扫描与MRI扫描二者结合使用。PET记录脑的活动,而MRI得到脑的结构,这样便可把PET扫描结果影射到同一个人的脑上,而不是像过去做的那样影射到一个"平均"的脑上去。然而,不久对这些结果的解释就会遇到上述由于缺乏详尽的神经解剖学知识而产生的局限。

  现在又发展出一些使用MRI扫描的新方法。其中一种方法对类脂化合物特别敏感。扫描得到的图像可以用来帮助定位某个人的一些不同的皮层区域(不同人的这些区域的准确位置有所不同)。这是由于某些皮层比其他部位具有更多的有髓鞘的轴突,含有更多的类脂。

  其他一些新的MRl方法试图探测各种新陈代谢及其他脑活动,而不仅仅探测其静态结构,但它们的信噪比似乎都比常规的MRl低。因而人们期待看到这些新方法的发展。

  关于人脑的研究就先叙述到这里。有什么方法可以观察到动物脑中神经元的行为呢?有一种方法是用较细的电极获取最为详细的信息。这是一根尖端暴露的绝缘导线。将动物麻醉后,移去部分头骨,并将电极正好放置在神经组织内。由于脑中没有痛觉感受器,因而该电极并不会使动物感到痛苦。只要微电极的尖端离某个细胞非常近,它就可以在该细胞外探测到它在什么时候发放。它还能收集从较远的细胞传来的较为微弱的信号。将电极尖端沿它的长度方向在组织内移动,就可以一个接一个地检测神经细胞的活动,实验者可以选择将电极置于动物脑中的位置,但从某种意义上说他记录的究竟是哪种类型的细胞完全要看运气了。现在人们常使用一组电极进行记录,这样就可以同时探测不止一个神经元的活动。

  另一种技术是对从动物脑中得到的神经组织的一层很薄的切片进行研究。在这里使用的电极是一种非常小的玻璃管,它的尖端逐渐变细。小心地放置电极使它的尖端刚好在一个神经细胞内部。这样可以得到关于该神经元的活动的更为详细的信息。(这项技术也可用于麻醉的动物而不会损伤其脑部,但用在清醒的动物则要困难得多。)如果浸泡在合适的培养液中,脑片能维持许多小时。在脑片中很容易灌流不同的化学物质来考察它们对神经元行为的影响。

  在某种情况下,从非常年幼的动物的脑中提取的神经元能够在碟子中生长并向四周扩展。这样的神经元在生长时会与周围临近的神经元接触,这种条件与活着的动物体的环境相差更远,但它可以用来研究神经元内部连接的基本行为。这些连接的膜上有通道。当通道打开时,允许带电原子(即离子)流过。

  最令人吃惊的可能是当前有可能研究单个离子通道中单个分子的行为。这是通过一项称为"膜片钳"技术实现的。欧文·内尔(Erwin Neher)和伯特·萨克曼(Bert Sakinann)因为发展并应用这项技术而荣获1991年诺贝尔奖,他们使用了一种小型玻璃吸液管,它具有一个特殊的倾斜尖端,直径约12微米,能从类脂膜中吸起其中的一小片。如果运气好的话,这小片中至少会包括一个离子通道。经过电放大器及记录装置可对穿过该膜的电流进行研究。在这小片膜的两侧相关离子的浓度保持着不同的值。当通道打开时,即使只有很短暂的时间,也有大量带电离子奔涌穿过。这种汹涌的离子潮产生了可测量的电流。即使只打开一个通道也是如此。这样人们便可研究神经递质及其他药物制剂(通常为其他的一些小的有机分子)的效果,以及膜电压的作用。

  膜片钳也被用来进行另一项关于离子通道的研究。该通道的基因被人工引人到未受精的蛙卵中。在这些外来基因的引导下,卵母细胞(即未受精卵)会合成这种通道的蛋白并将其放置于外膜。这样就可以利用膜片钳将它吸取出来。这种技术对于发现某种特别的离子通道的基因很有帮助。

  现在作一总结,目前有许多种方法研究人和动物的脑。其中一些方法从头颅的外面进行研究,另外一些方法则直接深入脑的内部。所有的方法都有这样或那样的局限性,或者是时间分辨率或空间分辨率不足,或者过于昂贵。有些结果非常容易解释,但仅能提供相当有限的信息;另外一些测量做起来很容易,结果却很难解释。我们只有综合不同的方法才有希望解开大脑的奥秘。

  ①在极少数情况下,出于医学原因必须在脑组织中很深地植入永久性电极。但植入的电极数量很少,故能得到的信息也十分有限。

  ①目前常用的一种近似方法是假设脑中存在四个中心产生大部分这些电活动。这样,通过数学手段有可能求出这些中心的大致位置。有一种方法用来检验这种假设的有效性,即假设存在五个中心并重复上述计算。如果得到的四个中心很强而另一个非常弱,那么四个中心的近似就可能是相当有效的。即便如此,这也仅仅是一个有根据的猜测罢了。

  ①正电子在与电子结合以前会漫游一小段距离。结合后,两个粒于都湮灭,它们的质量转变成辐射,成为按几乎相反方向运动的两束了射线。记录这些γ粒子的是一个环状的相干计数器。有一台计算机综合处理所有衰变的痕迹,并分析出最可能产生这些γ射线的区域。

  "我眯起一只眼睛偷偷地看,事情原来是这样……"

——儿童游戏

  ""本身是一个相当复杂的过程。因此,脑中的视觉部分并不那么简单也就不足为奇了。它们是由一个庞大的初级系统、次级系统和许多更高级系统构成。各个系统都要接受来自于上百万个神经元的输入。这些神经元位于眼睛的后部,称之为神经节细胞。初级系统通过丘脑的侧膝体与新皮层相连接。次级系统要投射到前面提及的四叠体上丘。

  眼睛的一般结构如图38所示,它具有一个可自由调焦的晶状体,至少对四十五岁以下的人是可以自由调节。还有可改变孔径大小的瞳孔。在较强的光照下,孔径就会变小。晶状体把视场内的图像聚焦到位于眼睛后部的一片细胞之上,这薄薄的层称为视网膜。在其中一层上有四种不同的光感受器,它们对于入射的光量子有响应。由各自的形状取之名,如,视杆细胞和三种视锥细胞。每只眼睛里视杆细胞的数量超过十亿,它们对于微弱的光有响应,且仅有一种类型。视锥细胞的数目约有七百万,它对强光有响应,且具有三种类型,每种对入射光的不同波长范围有响应。正因为这样,我们才能看到不同颜色。这一点在第四章 中已作过介绍。

  当输入信息经过视网膜时,需进行第一步加工,事实上,视网膜本身就是脑极其微小的一部分,与新皮层相比研究它就更容易些。美国生理学家约翰·道林(John Dewling)把它称为通往脑的窗口。它也许就是能够完完全全了解脊椎动物脑的第一步。尽管它的结构也许是很值得研究的,但我仍把它看作一个"黑箱",并仅仅介绍有关它的输入与输出之间的关系。所谓输入就是指射入眼睛的光线,而输出就是指神经节细胞的发放。①

  用于明视觉或日间视觉的锥体细胞在眼睛中央凹附近的分布密度极高。因此,我们才能够看到极其微小的细节。这也就是当你为了看清楚某个感兴趣的东西时,你就会注视它的原因。与此相反,当你在黑暗中能够把某个物体看得清楚,这正是由于视网膜上具有很多的视杆细胞。

  眼睛以不同方式移动,它可以跳跃或移动,称为扫视,一般每秒钟为3-4次。灵长类动物的眼睛可以跟踪某个运动目标,这是一个"平滑追踪"的过程。令人难以理解的是当你要使你的眼睛沿着静止的场景做平滑移动时,这几乎是不可能的,如果你一定要试图这样做时,你的眼睛将会做跳跃式的移动,还可以做各种连续的微小移动。不管用什么办法使视网膜上的图像完全保持平稳,那么在1-2秒钟后这种视感觉依然会消失。(这个问题将在十五章作更加详尽的讨论。)

  把信号从眼睛传送到大脑的细胞称为神经节细胞。任何一个特定的神经节细胞只能对视场中某一特定位置上的小光点开启与关闭有响应,见图39所示。由于晶状体把这个光点聚焦到视网膜上该神经节附近的地方,因此它一定要在那个特定的位置上。但这也依赖于眼睛聚焦点的位置。(就像在照相机中,底片上某一特定点的反应既与它在底片上的位置有关,还与照相机聚焦的方向有关。)视场中能够对一个单细胞活动产生影响的区域称之为感受野。

  在完全黑暗时,神经节细胞的发放常常是很低且无规则的。这种发放称为背景发放率。有一类神经节细胞叫做ON中心型,即当一个光点投射到感受野中心时,它的发放骤然增加。在这个小的中心以外,围绕它们有一个圆形范围。在这个区域上,如果同样用小光点刺激它时,则发生与之相反的作用。如果光点完全落在环形区域上,则背景发放就完全停止。而当撤光点时,将有一丛脉冲发放(见图39左侧)。

  假定视网膜上放置各种大小的光点,使它们的中心位于该细胞感受野的中间区域,正如我们所见,当用小光点刺激时,该细胞就强烈发放,而光点的直径越大其响应越小。当这个光点大到足以覆盖中心及围绕它的环形区域时,则该细胞根本就不发放了。换句话说,感受野中心区域的响应与周边是相反的,这就意味着任何一个特定神经节细胞对在恰当位置上的光点刺激具有强脉冲发放,而对其整个区域的均匀光刺激并没有响应。视网膜就是要去掉部分传入眼睛里的冗余信息。它传送到脑中的正是在视野中的感兴趣的信息,在那里光分布是不均匀的,而要忽略的正是几乎不变的部分。

  与ON中心型细胞数目差不多的另一类细胞是OFF中心型细胞:大略地讲,它们与第一类细胞性质正好相反,即当在感受野中心把光点撤走时,它会有强烈的发放(见图39右图)。这就说明了许多神经元相当一般的性质,即它们可以把这些峰电位下行传送到轴突、一个神经元不会产生负向的峰电位。那么,它们又怎样传输负信号呢、在丘脑或皮层中要找出一个快的背景发放率,比如说200赫兹,这是相当不容易的。如果这样一类细胞存在的话,通过增加其发放率到400赫兹,则产生一个正的响应,通过降低其发放率至零则产生一个负的响应。通常,替代这种神经元的有另外两类相当类似的神经元,它们都具有很低的背景发放率,一类是当某一参数增加产生发放,另一类则对其减少而有响应。当没有施加任何刺激时,神经元通常也不作出任何反应,更不是200赫兹,这大概是为了保存能量。

  如果大脑要传送在某点按正弦形变化的神经活动,那么当信号为正的时候则某个神经元发放,当它为负时,则另一个神经元发放。但需告诫的是不能用太简单的数学函数去描述所发生的一切:,而且,一个真实的神经元常常对输入的突然变化以初始阶段的一丛发放作出响应。而这种时间上的发放模式随神经元而各异,神经元并不是按照数学家的便利而进化的。

  神经节细胞的感受野大小是相当不同的。位于眼睛中心区域的要比外周的感受野要小。节细胞之间相对讲相距是比较近的,因此,它们的感受野是相互重叠的,在视网膜上一个光点通常会引起一组相邻神经节细胞的兴奋,即便它们发放程度并不一样。

  神经节细胞并不仅仅只有两种主要类型,即ON中心或OFF中心。它们实际上还有好多类别,且每类又包含有其亚型,在哺乳动物中这样的分类方法在各物种间也稍有不同,对于猕猴来说,有两个主要分类,①有时称为M细胞和P细胞(M细胞是指Magno,意思为大;P细胞是指Parvo,意思为小)。人眼的神经节细胞与其极为相似。在视网膜的任何地方,M细胞都比P细胞大,而且也具有大的感受野。它们还具有粗厚的轴突,这就使信号的传导速度加快。同时,M细胞对光强分布中的微小差别敏感,因此它能够很好地处理低对比度。但是它们的发放率在高对比度时会达到饱和,它们主要用于对视觉场景中的变化发出信号。

  P细胞的数量更多,与多数M细胞相比它们的反应具有更好的线性,即正比于输入。而且它们对细节、高反差及颜色更感兴趣。例如P细胞感受野的中心对绿色波长反应很强,但与环绕中心的外周区对红色波长更敏感。正是由于这个原因,中心与外周具有对不同颜色光的敏感性,则可以把P细胞分成几类亚型,每种亚型对不同颜色的反差有敏感。在这里,我们再次看到,视网膜不仅只是传输落到光感受器上的原始信息,实际上,它已经开始通过多种方式对信息进行处理。

  神经节细胞主要包括M细胞和P细胞,每一类都具有ON中心和OFF中心的感受野,它们通过轴突将信号传导到丘脑的侧膝体,然后再将信息传输到新皮层。而且,视网膜也还要将信号投射到上丘(Superior Colliculus),但P细胞并不投射到那里,尽管一些M细胞和其他各种非主要类型的细胞可以投射到上丘。由于缺乏P细胞的输入,上丘是色盲的。

  在大多数脊推动物中,右眼的神经节细胞几乎全部投射到左脑的视顶盖(大致相当于哺乳动物上丘),而左眼与此相反。在灵长类动物中,各种投射更加复杂些。每只眼睛投射到大脑的两侧,但脑的左中侧仅接受与视野中右半部分有关的输人。

  因此,用你右眼中央凹看到的东西,被送到左边的侧膝体,然后再达到左边的视皮层,见图40所示,并且也可以到达左边的四叠体上丘。当然,正常的大脑两半球通过几处神经纤维束相互联系在一起,最大的纤维束是胼胝体。如果出于医学的原因,把它切掉(这在第十二章将会讨论),这个人的左脑只看视野中的右边的部分,右脑只看到视野中的左边,这会产生某些令人很奇怪的结果,几乎就好像有两个人在一个脑里。

  让我们先扼要地介绍一下投射到上丘的次级系统。这是低等脊椎动物(如蟾蜍)主要的视觉系统;对哺乳动物,它的许多功能已被新皮层等完成,而其余的主要功能似乎如眼动的控制,也可能还包括视觉注意的一些方面。

  上丘是一个分层结构,主要有三层,称之为上中下。上层接收来自视网膜的各种输入,同时也接收来自听觉系统和其他传感系统的输入。各种输入具有粗略的映射关系,尽管这种映射的细节物种各异。下层的输入就更具多样性了。

  很重要的一点是下层中的一些神经元与大脑对侧的上丘相连接,这条通路被称为顶盖间连合(它在第十二章描述的裂脑手术中保持完好)。下层的神经元也连接到脑干上的神经元,控制着眼或颈部的肌肉活动。

  这些神经元具有什么样的特性呢?上层中的许多细胞对运动具有选择性。在猕猴中它们是色盲的,即对人射光的波长没有选择性。它们对微弱的刺激很感兴趣,但对刺激的细节不怎么敏感。不管是给光或撤光,它们对光的变化都会作出瞬时性反应。这些大概都是无意识的注意产生的关键。它们发出类似于"注意!有什么东西在那儿"的信号。

  任何作过演讲的人可能有这样的经验,当突然发生变化时,例如,演讲者的左边或右边的门打开了,所有的听众的眼睛同时朝向那个方向,这种即刻的反应在很大程度上是无意识的。我认为上丘是产生这类眼动的主要因素。

  眼睛究竟怎样知道该往哪里跳跃呢?这就要感谢戴维·斯帕克斯(David Sparks)、戴维·罗宾逊(David Robinson)和其他一些人设计的精巧实验。现在我们对眼动有更好的了解。其实上丘的上层也许可以看作感觉的投射,中间与下层对应于运动系统的投射。在这些区域中,神经元的发放对眼睛变化的方向与振幅进行编码,以便使眼睛以跳跃的方式跟随靶目标。在跳跃之前那一霎那这个信号或多或少是与眼睛的位置无关。这个信号被送到脑干以决定需要作出多大且在什么方向上的跳跃。

  这种信号并不能用工程师所猜测的那种方式来表达。一个神经元也许对特定的跳跃方向编码,而它的发放率可能对跳跃的距离进行编码。因此,用这种方法,一个神经元的小集合就可以对所有的方向和距离编码。另一种方法是每个神经元就可以对跳跃的向量,即方向和距离进行编码。实际上并不是这样的。为了产生一个跳跃,上丘中一片神经元就开始快速发放。从广义上讲,它是确定跳跃向量的运动映射图的活动中心。这样一个特定的上丘神经元也许参加到许多极为不同的跳跃中。正是这些激活的神经元作为一个整体以便确定跳跃向量特性。简言之,一次眼动都将受到许多神经元的控制。①

  眼动的速度究竟由什么来控制呢?这可能与激活区域内神经元的发放率有关。它们发放得越强,眼睛移动得也越快。因此,最终的跳跃方向不仅依赖于有关的神经元发放有多么快,而且还依赖于这群活动的神经元的有效中心在运动系统定位图上的位置。

  你可能会发现这种排列方式很独特,但它是个极好的例子,可以说明一群神经元怎样对相关的参数,如:眼动的速度与方向进行编码的。它的优点是如果一些神经元不参与活动了,整个系统也不会停止工作,没有一个工程师能够设计出这样一个系统,除非他已经了解脑是怎样工作的。当这些信号到达脑干时,必须以不同的信号集合去传递,以便控制眼睛的肌肉。究竟怎样恰当地做到这一点还待进一步研究。

  现在让我们考虑通过侧膝体投射到视皮层的初级视觉系统。侧膝体是丘脑的一小部分。当我1976年去索尔克研究所,我继承了属于已故的布鲁诺·布鲁诺夫斯基(Bruno Bronowski,电视连续剧"The Ascent of Man"的制作者)可以鸟瞰海洋的办公室,和一个两倍于真实脑的彩色塑料模型。我开始着手干的就是找出侧膝体在模型上的位置。我很容易地找到丘脑,但花了好多时间才找到了一个上面标着侧膝体的小突起,但,这也没有什么可惊讶的,因为它只不过是由150万个神经元构成的。

  了解侧膝体需要抓住两点,第一点,它仅仅是一个中转站。第二点则与前一点相反,它还干了许多到目前为止我们还未曾了解到的更加复杂的工作。

  侧膝体中为主的神经元是主细胞(principal Cell),它产生兴奋性反应。此外,还有一小部分具有GABA受体的抑制性细胞。侧膝体被称为中转站有解剖上和生理上的两个原因。主细胞直接接收来自视网膜的输入,并且经轴突传送到皮层V1区,这条通路上再没有其他神经元。因此,称其为"中转站"。这些轴突很少有侧枝连接到其他主细胞上或侧膝体的其他部分。换句话说,这些神经元倾向于保持孤立而不愿与同伴进行交流。另外,视网膜的输入被映射到侧膝体,以使侧膝体上每一层对来自视野的映射稍有畸变。侧膝体的神经元的感受野比视网膜细胞的要大一些,且二者间是极其相似的。乍看起来,侧膝体仅仅是把视网膜接收的信息原原本本地传递到视皮层。

  "MAP"这个词在视觉系统中有两种稍稍不同的解释。它的一般意思来源于那些在供体中相距不太远的神经元,直连接到受体域中彼此靠近的轴突的终点。这就要在接受域中产生供给域的粗略的映射。更严格的意思是指"视网膜映射",在某一特定的视域中彼此相邻近的神经元趋向于对视网膜上相邻点上的活动反应,也就是将视网膜上相邻点从视域上三维信息转换成二维投射。当对视觉系统更高层次作进一步探索时,视网膜映射由于许许多多步的近似映射会越来越变得杂乱无章。但是,从一个区域到下一个区域的映射仍然保存得相当完好。

  猕猴的侧膝体共有六层,见图41所示,其中两层是由大细胞(称之Magnocellular)构成的,它们分别接收右眼或左眼的输入,但彼此间却几乎没有什么相互作用。而且输入主要来自视网膜的M细胞。很自然也会联想到视网膜的P细胞也是按照类似的方式投射到另外两层具有许许多多的小细胞上(称为Parvocellular)。但是,它恰恰并不是只有两层,而是共有四层。它们的输入是分别来自两个眼睛,且总是保持分别输入的。

  大细胞层与小细胞层究竟起着什么不同的作用呢?在两个实验室用训练过的清醒的猴子去完成各种视觉任务,然后在侧膝体上做了局部的小损伤。这些实验大致能表明:小细胞层中的神经元主要携带有关颜色、纹理、形状和视差的信息,而大细胞层的神经元主要检测运动和闪烁目标(见参考文献2)。

  到目前为止,我们仅讨论了兴奋性的主细胞。抑制性细胞主要分为两类,它包括侧膝体本身与丘脑的网状核团中的细胞。网状核团是在丘脑中一薄层,千万不要与脑干中的网状结构相混淆。这一薄层的细胞围绕着丘脑的大部分,且神经元都是抑制性的。它们接收的兴奋性输入来自传人到新皮质或由此传出的轴突,而且它们彼此存在着相互作用。它们的输出又被立即映射到在它们下面的丘脑部分。如果把丘脑看成是通向皮层的大门,那么这些网状核团就好像看守大门的卫兵了。

  侧膝体中的神经元还可以从皮层V1区获得反馈输入。令人奇怪的是,从V1区反馈的轴突比上行到皮层的轴突更多,但这些下行的轴突与远离胞体的树突形成突触。因此,它们的影响会大大地被削弱。这些反向的连接确切的功能还不甚清楚(有关它们功能的一些猜测请看第十六章)。

  当然,它也有来自脑干的输入,调制着丘脑的行为,尤其是网状核团的联系。这意味着动物清醒时,侧膝体中的神经元可以自由地传送视觉信息。但是,当动物处在慢波睡眠时,这种传送就被阻断,这里已较详细地叙述了一些与丘脑有关的神经元以及各种类型的突触联系,然而有关侧膝体的特性应能表达那种既简单又复杂的令人难以理解的组合。

  侧膝体中的主细胞投射到视觉皮层(见图40所示),猫的轴突可以到达几个视觉区,但猕猴与人的轴突几乎都连接到视觉的第一区(1)。(在猴的皮层中,它与其他区域的联系较弱,这个问题与第十二章 讨论的育视有关。)如果人或猴的V1区中全部受到严重损伤,他(它)的视野的一半几乎全盲。

  乍一看,大脑皮层的任何部分都是那么杂乱无章。每一平方毫米大约有10万个神经元;轴突与树突相互交错,还有许多起支撑作用的胶质细胞与微血管都混杂在一起,完全处于混饨状态。它们可不像计算机的芯片上晶体管和其他结构的布线有着整齐的排列。如果进一步作仔细观察,也会发现它确有部分结构是有序的。在大脑皮层的许多不同区域中,神经元的一般排列还是具有好多相同之处。让我们首先看看这些共同点究竟是什么。

  大脑皮层就是一片薄薄的层,它的垂直厚度比平行于该层表面的长度要小很多,神经元的排列与外观是非对称的。与这一薄层表面相垂直的方向称之为垂直方向(这如同把皮层在桌面上展平一样)。另外两个方向称之为水平方向。例如:几乎所有的锥体细胞都有沿垂直方向上升到皮层表面的树突。与之相比,皮层水平方向上的细胞彼此有着相当类似的特性。这与森林中的树木的排列有点类似,垂直方向与水平方向有明显的不同。

  皮层最引人注目的特性就是层状的。了解这些层以及各层中神经元不同的功能是很重要的。为描述上的方便,可以把它分为六层。实际上在层中也还包含有几个亚层,见图42所示,最上面的一层为第1层,它具有很少的细胞体,主要是由位于它下面层中的锥体细胞向上延伸形成的树突末梢及末梢间的相互连接的轴突构成。因此,它都是这些神经布线而很少有细胞体。在它的下面是23层,常常被统称之为上层。在这些层中有许多锥体细胞。第4层是由许多兴奋型的星状细胞组成,而几乎没有锥体细胞。它的厚度在不同的皮层区变化是相当大的,在一些皮层区几乎没有这一层。第56层称之为下层,它包含有许多锥体细胞,其中一些细胞的树突末梢一直可到达第1层。

  在不同层中的神经元之间不仅是相当不同的,而更重要的是这些神经元的连接方式也极不一样,见图43所示。

  上层(第23层)的细胞仅与其他皮层区相联系。尽管它们中的一些神经元通过胼胝体可与大脑另一侧的皮层区连接,但它们的投射作为一个整体未超出皮层区。虽然第6层的一些神经元具有与第4层连接的侧向轴突,但它们当中神经元主要反向投射到丘脑或屏状核,它是位于皮层下的附属于皮层的核团,并通向脑的中部。第5层是皮层中很特别的一层,只有这层的神经元完全投射到皮层以外的地方,也就是说,它们不投射到丘脑和屏状核,尽管也有一些神经元投射到其他的皮层区。因此,从某种意义上讲,第5层把在皮层中处理完的信息传送到大脑其他部分和脊髓。所有这些远离皮层的连接,甚至包括反向的连接都是兴奋性的。

  当然,皮层也具有许多抑制性的细胞。但在数量上占多数的是产生兴奋性的锥体细胞,用GABA作为神经递质的抑制性细胞大约占了整体的五分之一,剩下的主要是刺星状细胞。这些可产生兴奋的刺星状细胞的轴突相当短(约100200微米),仅仅能够与水平方向上相近的细胞联系。所有抑制性细胞都具有这种特性,但也有些例外。①

  有一类抑制性的细胞好像不存在。锥体细胞的轴突经常向下延伸到离皮层相当远的区域。在此之前,它通常会伸出几个分枝,这称为侧枝。在某些情况下,这些侧枝又形成许多局部分叉,而且它们就在同一皮层区域内沿水平方向伸展相当长的距离,约几个毫米。

  如果我们认为皮层能够实现计算功能,它就应该具有一种类似"';的特殊类型的抑制性突触。在把结果沿主要轴突的分枝传送到其他区域的目的地之前,它要能够允许信息通过轴突离开胞体,并在皮层区域内循环好几次,也就是说,它需要实现几次循环计算。为此,我们需要一个强抑制的突触集合,但它不在该轴突的起始端,而是位于轴突就要离开皮层之前的地方。尽管有一位理论家为了使他的模型能够工作,需要构建这样一类突触,但实际上还没有证据说明它们的存在。在轴突各个分叉点上也没有发现。

  这些却显示出皮层区总像是没有做任何循环的处理就急急忙忙地将信息发送出去。这也意味着,当大脑需要通过反复迭代运算建立一种活动的共同体时,各个皮层区的连接与单皮层区内的连接是同样重要的。

  信息究竟在皮层的各层之间是怎样传递的?这是一个极其复杂的问题,然而我们可以从下面粗略的框图获得一些了解(见图43)。

  进入皮层区的主要的,但不是唯一的入口位于它的第4层。但当它很小或不存在时,就直接进入第3层的下部。第4层主要连接到上部的第2J层,然后,又依次与第5层形成一个很大的局域连接,一直到达位于它下面的第6层。第6层又依次通过短的垂直联系返回到第4层。第1层还接收来自其他皮层的一些主要的输入。这些与来自低层的高锥体细胞的树突末梢相联系。

  关于小片皮层中的许多轴突连接的复杂性质,特别是某一层到其本身的许多连接是惊人的长,以上这些都未作介绍。很显然,在所有这些规律性的后面也还存在着一些必然的联系。然而,在我们对皮层有较深了解之前,要讲清楚这些规律是太困难了。新皮层可能是人类无上的荣耀,故它不会轻易地将其秘密公诸于世。

  最后将谈到大脑的分区。最初,皮层的分区是根据在高倍光学显微镜下,观察切片染色后的形状(这类学术研究称为结构学)。纹状皮层正是由于它具有着明显的水平方向纹理而得名,这些纹理是从大的轴突末端沿各个方向水平伸展出而形成的。这些纹状足够的大,可以从染色的显微镜切片中,用肉眼观察到纹理,见图44所示。这些纹理突然在一大片皮层区域的边缘上消失了。因此,很自然地,把这样一块相当一致的区域给它起个名字或排个序号。皮层其他区域稍微有些不同。例如,纹状皮层具有很厚的第4层,而初级运动皮层即便有的话也是很少的。遗憾的是,相邻的区域的差别如此细微,以至于神经解剖学家们之间也无法达成一致的见解。20世纪初,德国的解剖学家科比尼安·波罗德曼(Korbinian Brodmann)把包括人在内的各种哺乳动物的皮层分成几个不同区域,并给每个区域排序。他把纹状皮层叫做17区,与它相邻的区域定为18区,与18区相邻的区域称为19区。把初级运动皮层标为第4区。其他一些神经解剖学家,如奥斯卡和赛西勒·沃格(oskarand Cecile Vogt)把皮层分为更多的区域。①

  虽然波罗德曼的划分基本上是正确的,但总的说来这种划分太粗略了。比如说,17区、18区、特别是19区都是与视觉有关。在下一章 将会涉及到17区可以看作为单个区域,18区和19区还包括许多重要的亚区,因此,这样一些术语就不再使用了。当然在某些医学文章中,他们对人的皮层还沿用这样的划分。

  总而言之,视觉系统的初级部分是高度平行的即许多类似的但不同的神经元在同一时刻都处在活动状态。位于眼后部的视网膜是处理视觉输入的前端,它沿着两条主要通路将这些信息传送到通往皮层通路上的侧膝体及与眼动有关的上丘,还有脑干几个较小的视觉区,它们与眼动、瞳孔的调节有关。与颜色有关的信息传送到侧膝体,但不到达上丘。这些初级部分的信息都是相当局域和简单的。我们要是能看到任何东西,就说明这些视觉信息都必须在视觉系统的不同区域被作了进一步处理。

  ①在哺乳动物中,即使存在着从脑其他部分投射到视网膜的神经元,也是很少的,当然,移动我们的眼睛,可以影响视网膜神经元的发放。

  ①还有第三类,有时被称为"w细胞",包括相当多的神经元,并且具有各种特性。

  ①然而,请注意,由于所需的输出仅是一个简单的二维向量,因此,当一个区域同时要处理更为复杂的信息时,这种方法是不能用的。

  ①也称为"纹状皮层""17"

  ①一个例外是一种被称为"篮状细胞"的抑制性神经元,它的轴突在皮层内延伸长得多的距离,能有一个厘米或更长。当它们与另外一个神经元连接时,在它的胞体和附近的树突上形成多个突触。因此它们能在神经元的重要部位产生相当强的抑制。它们确切的功能还不了解,我们这里也忽略了一种著名的抑制性细胞的功能,这类细胞被称为"枝形细胞"chandeliercell)。它的轴突仅与锥体细胞相联,并且仅在它们轴突的起始部位,形成多个抑制性突触。

  ①就是奥斯卡·沃格切开并且检查了列宁的脑袋,苏联当局为了这个目的而授权与他。

  "我们应当尽可能把事情简化,但又不能过分。"

——阿尔伯特·爱因斯坦

  灵长类的大脑皮层由左右两片薄板构成,而每片薄板又可分成许多各异的皮层区域。如何确定皮层上一块特定的区域是否同属于一个皮层区呢?可能有效的判断标准有很多种。第一种方法是在显微镜下观察其剖面的结构形状——比如说,它是否具有延伸的第4层。我们已经观察到明确限定17区的条纹。这种简单的差异只在少数情况下是有用的,尽管可使用的分子探针更多时情况会有所改变。另一种方法是通过检测一个视觉区域的视觉映射的细节来寻找它的边界。但这种方法通常不太适用,尤其是在高层视觉区域,那里大多数几乎没有视网膜区域对应组织——即它们没有简单的视觉投射。目前最有效的手段是寻找每个假定区域的连接(包括输入和输出)的特征模式。应用现代生物化学方法可使这种方法得到相当可靠的结果。不过正如我们在第九章 所看到的,这些方法大多不适用于人脑。

  许多科学家对大脑皮层(特别是猫和猕猴)的功能划分作出了贡献。即便如此,我们的知识仍然是不全面的,只能看作是一种初步的结果。

  让我们从纹状皮层(17区)开始,它现在称作V1区(即第一视区)。V1区相当大,每平方毫米表面下有将近25万个神经元。在大脑皮层该数目通常大约是10万,V1区则是个例外。猕猴脑一侧的V1区总共有大约2亿个神经元。这可与来自侧膝体的大约上百万个轴突相比。从这些数字中我们马上能看出对从侧膝体到v1的输入必定有大量的处理。V1区并不比邻近的V2区更厚,而V2区的表面密度要低。这意味着,平均而言V1区神经元的体积相当小。这让人们产生一种印象,进化过程在合理的范围内尽可能多地将神经元塞进了V1区。

  来自侧膝体的兴奋性输入主要进入第4层,同时也有一些传到第6层。第4层有若干子区。来自侧膝体P层和M层的输入大多分别进入第4层的不同亚层,所有输入的轴突都广泛分叉,因此一个轴突可能与上千个不同的神经元接触。与之相应,第4层的每个神经元从许多不同传人的轴突接受输入。尽管如此,一个典型的棘状星形细胞只有部分突触(可能是20%)直接接受来自侧膝体的输入。其他突触接受来自其他地方的输入,这主要来自邻近的其他神经元的突触。这样,第4层神经元不仅仅聆听侧膝体的诉说,彼此也进行广泛的交谈。

  就像视网膜的输入映射到侧膝体一样,侧膝体的输入也映射到V1区。当然,这是一种对侧视野的映射。但这种映射并不是均匀的(图45)。对应于凝视中心附近的空间比视野外周要大得多。它使我回想起几年前流行的一幅幽默地图,描述的是一个纽约人眼中的美国。其中大部分是曼哈顿地区。新泽西被大大地缩小了,而加利福尼亚和夏威夷则仅在远处被附带标记上。

  此外,在小尺度上,皮层的映射极其杂乱无章。在双眼除了盲点及远离外周的所有地方,具有通过侧膝体向皮层的投射,这两条到达第4层的连接通路分离成指纹一样的无规则条纹(图46)。①在第4层以上和以下各层中,沿条纹中央有一系列"斑点"(用细胞色素氧化酶染色可显示出来)。这里的神经元对颜色和亮度特别敏感。

  一般而言,皮层V1区的不同神经元对不同的物体敏感。回想一下,侧膝体向皮层投射的神经元具有中心一外周拮抗的小感受野,猕猴第4层的一些神经元仍保持着这种特性,只是感受野稍大一些。在60年代,戴维·休伯(David Hubel)和托斯滕·威塞尔(Toresten Wiesel)(他们后来都在哈佛医学院工作)发现,对于V1区第4层以外其他层的大部分神经元而言,最佳刺激是细的亮棒(或暗棒)或者边缘:而不是一个光点,(因为这项发现以及其他一些工作,休伯和威塞尔获得了1981年诺贝尔奖。)它们对运动棒的反应比亮暗闪烁的棒更好。对于任何特定神经元而言,它对具有某一特定朝向的线或棒状剌激的发放最剧烈。如果棒的朝向仅偏了15。通常细胞的发放率也会变得很低。不同的神经元具有不同的最佳朝向,然而除了第4层某些部位以外,在垂直于皮层表面方向上直接相邻的神经元趋向于对同一朝向反应。这常被称作"柱状"排列。此外,如果沿水平方向穿过皮层,可以发现最佳朝向的变化相当平缓,仅偶尔会有突变。在皮层任意一个直径大约1毫米的小区域内,所有的各类神经元的感受野常常具有某种程度的重叠,并具有所有可能的朝向。这种排列被描述成"超柱""皮层模块",不过不要过分地从字面上理解这种观点。遗憾的是,这种提法对于理论家来说过于流行。他们当中有些人应当理解得更好些。

  休伯和威塞尔发现了两大类朝向选择细胞,他们称之为"简单细胞""复杂细胞",简单细胞的感受野的兴奋区和抑制区很容易定义,这种布局使它对棒或边缘的反应最佳。一些感受野的尺度比其他的更为精细,因而能反映更细微的特征。①

  复杂细胞与简单细胞的区别在于它们的感受野并不能简单地分成兴奋区和抑制区。要让它们发放,同样需要位于其感受野内的具有其最优朝向的一根棒或边缘,但它们对刺激在感受野内的位置并不敏感。其感受野常比邻近的简单细胞稍大些,此外,一些复杂细胞可对更复杂的刺激(如沿相同方向运动的一个光点图案)有反应。

  简单细胞或复杂细胞是如何设置输入连接从而产生了所观察到的行为的呢?应当清醒地认识到,在经过近三十年的研究之后。我们仍然不能确切地知道答案。从逻辑学的角度看问题显得很简单。对于简单细胞而言,只有当刺激点集的大多数总和起来形成最佳反应的棒,足以产生一个反应,它才会发放。它们进行一种""操作,但需要超过某个输入阈值才能引起发放,与之相反,当这根或那根直线(它们具有相似的朝向)在一个复杂细胞感受野内某处呈现时,细胞会发放。这好像复杂细胞接受来自一个由相似的简单细胞构成的完整集合的输入,并对其执行""操作。看来复杂细胞在处理上确实比简单细胞做了进一步加工,但深入的研究表明这种简单的观点导致了困难,因为许多复杂细胞具有直接来自侧膝体的输入。此外还有一个问题,就是最佳反应通常是对运动直线作出的。有时一个神经元对(垂直于直线的)一个方向的运动的反应比相反方向要大得多。

  特别遗憾的是这个问题尚未解决。至少有这样一种可能,即简单细胞执行""型操作,随后再由复杂细胞执行""型操作,这是大脑皮层的所有区域所使用的一般策略。倘若真是如此的话,那么了解它就是非常重要的。

  皮层V1区的神经元的反应形式有多种。正如我们已经看到的那样,第4层的许多神经元是中心-周边型的。斑点中的神经元也同样如此。其他大多数神经元具有朝向选择性,只不过有些神经元对不太长的直线(常指端点抑制)反应最佳(1),而其他的神经元,如第6层的许多神经元,对非常长的直线反应最佳。

  另一种类型的神经先从双眼接受输入,只有这种输入来自视网膜上位置不完全对应的神经元时,它的发放最强。这在提取视野中目标的距离信息时是必要的,因为不同距离上的物体产生的视差不同(这在第四章解释过),我们已经看到,某些神经元对特定方向的运动敏感,而对相反方向的运动则没有反应。许多这样的细胞位于一个称作4B的薄层内。许多神经元对所有波长的可见光具有相同的反应,而其他有些神经元,特别是在斑点中的神经元,其感受野中央和外周的反应可对波长有选择敏感性。简而言之,它们对颜色敏感。所有这些都表明了V1区的不同神经元按不同的方式处理输入的视觉信息。

  感受野是视野的一部分,在其内部光的变化会引起细胞发放。然而,感受野外有大得多的周边区域,在该区域内光的变化本身不会引起细胞发放,但能调节由感受野产生的原有的效果。这个区域现在称作"非传统"感受野,它引人了一种关于局部环境背景的重要观点。这个环境可以具有特定的特征。一个细胞不仅仅对一个特定的特征敏感,同时也受邻近的相似特征的影响。这种神经行为的重要特性有可能出现在视觉等级的所有层次。它可能具有重要的心理学含义,因为心理学家发现在许多条件下环境是重要的。

  为什么皮层V1区具有视野的映射(尽管这种映射比较粗糙并有扭曲)?这并不是因为有一个小矮人观看它——我们的惊人的假说反对这种观点。最可能的原因是这样能保持脑的连线更短些。V1区的神经元主要关心的只是视野内一个小区域中发生的事情,它需要与其他一些神经元相互作用以提取它们表达的信息,一种大致的映射使得它们彼此保持相当近。理论家们指出,这种最短接线要求也可以解释在皮层发现的各种类型的分块现象,因为它允许在一个整体的主要映射中存在多个子映射。一个子映射中的一小块可能在内部有强相互作用,同时与同一子映射内的邻近部分有稍长一些的连接。这样的小块还可能与邻近的其他类型的子映射的部分有较弱的局部连接。按照同样的方式,有时把一座城市考虑成由许多具有共同利益的相互作用的地方社团组成,这是有好处的。如何布置这些团体,部分是为了使交流更便利,因此整个城市散布有许多超级市场,而每个居民都离其中某一家不太远。

  最终需要在所有层次上确定这个连接线的经济学问题。将该问题与新皮层神经元总数保持在一个合适的最小值的需要联系在一起,可以很好地解释皮层(特别是视觉系统)组织的一般规律。

  V1区以及其他各区的映射的构造形式是这样的:看来它的大尺度特性(比如,V1区中哪个区域对应于黄斑)可能是在有关基因的指导下随着脑的发育过程中固定下来的。映射的具体细节则是由来自眼睛的输入的调节产生的,它仿佛依赖于大量输入突触的发放是否相关。其中某些发育甚至可能在出生以前就开始了。在动物幼年早期有一个临界期,在此期间可能很容易实现这种接线的改变,但映射的某些改变则可在此后的生活中发生。

  有些习惯用语表征了神经元的反应特性(如V1区许多神经元对朝向的反应),它们是有用的。一个常用词是"特征检测器",它确实抓住了事实,即有些神经元对朝向敏感,有些则对视差或波长敏感,等等。但它却有两个缺点。首先,它暗示神经元仅对它名字前的"特征"反应。(有些人或许认为它是唯一对该特征反应的神经元,但这远非事实。)这忽视了该神经元也可能对其他特征(通常是相关的特征)反应这个事实。例如,一个对朝向敏感、具有端点抑制反应的细胞对(适当位置适当朝向的)短线有很好的反应;但由于感受野的子结构,它也会对部分在其感受野内部的长得多的直线的曲率敏感。

  对特征检测器的第二种误解是它暗示神经元被脑用于产生那种特定特征的觉知。这不一定是事实,例如,一个对不同波长有不同反应的神经元并不一定是使你看到颜色的系统的一个核心部分。它可能属于另一个系统,仅仅将脑的注意引向颜色差异,而并不产生关于该颜色的觉知。

  另一个方面,由特征检测器编码的特征很少像工程师们设计的那样分成精巧的类型。现在很少提及这一点。例如,人们会认为一种"简单"类型的朝向选择细胞有两种方式设置其兴奋区及抑制区,一种沿感受野长轴方向是对称的,而另一种则是反对称的。①这些类型确实存在,同时还有许多其他相关但混乱的设置形式。我们在第十三章 将会看到,人们可以预料,这种结果恰恰是使用固有学习算法的神经网络演化发展而来的,而并非严格地由设计者事先设置的。

  为了理解一个神经元在脑的操作中所起的作用,我们至少需要知道它的感受野以及它的输出投射到何处,即与其轴突有突触接触的所有神经元。索尔克研究所的特里·塞吉诺斯基(Terry Sejnowsh)称之为"投射野",与"感受野"这个术语相对应,在讨论(神经元在脑中的)"含义"时投射野可能扮演了重要角色。如果一个神经元的轴突被切断,那么它的活动对脑来说不会有多大意义。

  皮层V2区(视觉第2区)也很大。它也像V1区那样具有对侧视野的映射,从黄斑到周边V1区的映射的局部尺度(称为"放大因子")有所变化,如果因此说它显得有些不寻常的话,那么仔细检查图45可以看出,V2区的映射甚至更为奇特,映射基本上分为两部分,大致对应于对侧半个视野的上、下部分。①同样,专用于黄斑附近部分的区域比视野外周部分更大。

  整体而言,V2区的神经无所敏感的一般特征与V1区大致相同,如朝向、运动、视差和颜色等,但也有差异。几乎所有V2区神经元接受双眼输入。它们的感受野常比V1区的神经元大,并能以更精细的方式作出反应。例如,有的神经元对某些主观轮廓②有反应。虽然在V1区也发现了有些神经元对线段端点型主观轮廓(图15)有发放,但对其他类型(如直线连续型,见图2)敏感的神经元确实只出现在V2区,而在V1区则没能发现。不只一位哲学家在得知存在这种对主观轮廓反应的神经元后感到吃惊,但我们并不以为奇。当我们清清楚楚地看到了一些视觉特征(而不仅仅是推断出它)时,在我们脑中确有某些区域的神经元对它们发放。这或许是一个好的普适规律。果真如此的话,它将是一个很重要的规律。

  皮层V2区也是分块的。使用可以显示V1区斑点的酶,可以看到相当粗糙的条纹,走向大致垂直于V1V2的边界。每类条纹所敏感的一般视觉特征并不相同。看来有若干条不同的信息流通过V2区。有一条处理的主要是颜色信息,另一条则主要是视差,等等。科学家们对所有这些细节很感兴趣,因为这些问题正与不同亚区的各种神经元精确的分类方式以及它们如何使我们能够看见物体密切相关。即便在单个区域内,神经元的行为也被分成部分分离的类别,这对我们来说是重要的,尽管对于这种分离的清晰程度尚有争议。

  到此为止我只谈论了V1区具有向V2区投射的神经元。V2区是否有神经元反向投射①到V1区呢?答案是,具有反向投射的V2区神经元与有前向投射的V1区神经元几乎一样多,但有一个重要的差异。前向投射多集中在V2区第4层,而到V1区的反馈完全避开了第4层。

  以前曾经认为只存在三个视觉皮层区域,即171819区。我已经详细地描述了其中的两个区域,V1区(等价于17区)和V2区(早先定义的18区的一部分)。此外到底还有多少区域呢?令人吃惊的是,现在至少已经识别出二十个不同的视觉区,另外还有七个区域部分与视觉有关。这个事实本身清楚地体现了视觉处理的复杂性。由于各个区的神经元具有不同的输入输出集合,因此它们的行为极为不同。图47是戴维·范·埃森(DavidVanEssen,现在西雅图的华盛顿大学)构建的猕猴展平的皮层的模型。由于皮层是弯曲和折叠的,图示必然会有所扭曲。①为了减少扭曲,在皮层薄板上有选择地进行了切割,得到了一个几乎隔离的V1区,插入在图的左侧。将该图与图48相比较,那里略去了表示皮层折叠的标志,并在相应位置上画了许多皮层区域,视觉区域以及那些具有部分视觉的区域都用阴影表示。对猕猴而言,它们总计占有总皮层略多于一半的区域,(要记住猴子是视觉功能非常强的动物。)

  这张图远非最后的结论。例如,右上方的46区仍可被细分。许多区域具有奇怪的名字,但它们通常是其全称的缩写,如MT代表中颞叶(middletemporal),VIP代表背侧内顶叶(ventral intra pari-etal),等等。其他有些区域具有数字编号(在此省略),它们通常是波罗德曼所定义的,其中一些已经被细分(如7a7b)。

  我将简要描述其中两个区域:MT区和V4区,因此对已知的关于全部视觉区的所有情况不作叙述。这特别是由于对许多视觉区的了解还相当缺乏。皮层MT区比较小,有时也称为V5区。它具有视野半区与视网膜区域相当好的对应,但其神经元的感受野一般比v1V2区大。MT区神经元对刺激的运动(包括运动的方向)特别敏感,每个神经元对一定速度范围内的刺激产生发放。有些对高速运动发放最佳,其余的则对应于低速运动。

  最初人们没有想到这些神经元的反应通常依赖于目标与背景的相对运动。加利福尼亚理工学院的约翰。奥尔曼(John Allman)意识到了这一点。因为与许多神经科学家不同,他对猴子以及它们的野生生活方式非常感兴趣,至今他仍在家中养猴子。他曾数次出国在猴于的自然栖息地对它们进行研究。因此他具有关于猴子的典型视觉环境的第一手资料。他试图在实验室中以一种大大简化的形式再现这种环境。他和同事们使用电视屏幕上由随机点组成的棒作为刺激,通常一个神经元可能对其感受野内沿垂直于它的长度方向向上(或向下)运动的斑点组成的棒有很好的反应。然而他发现,如果由斑点组成背景也沿相同方向运动,神经元的发放会下降。如果背景沿相反方向运动,那么该神经元对运动棒的发放将会提高。这样,神经元主要检测的是局部特征与邻近背景的相似特征间的相对运动。这正是前面提及的非经典感受野的最简单形式。虽然事情并不总是这样明了,①看来这样的神经元组成的集合能够学会不仅仅对一个物体的一个特征反应,也能对物体的某些环境特征反应。

  MT区的某些神经元对更复杂的运动方式反应。它们的行为与所谓的小孔问题有关,考虑图49,想像在一个屏上有一个小圆孔,通过它来观察一根没有特征的直线,它是一根很长的直线的一部分,这根长的直线的大部分被屏所掩盖,如果这根直线沿任何方向运动,你通过小孔所能看到的一切只是一小段直线沿垂直于它长度的方向运动。在图49的注解中有更加详细的解释。

  V1区中对运动方向敏感的神经元的行为便是如此。它所能感受的只是垂直于该直线方向的运动分量,而不是整个物体的真实运动。然而,MT区的某些神经元确实能对实际运动反应,特别是如果信号是由若干个线段集合组成的。实验表明MT区的神经元可简单地分成两类,一类能解决小孔问题,另一类则不能,就像们区的神经元那样。如果真是这样的话,那太好了。事实则要复杂得多。神经元表现出了这两类之间整个范围内的各种行为。尽管如此,这给出了一个例子表明视觉系统较高层次神经元的反应如何变得更加精细。

  如果输入信息被误解,脑就会作出错误的解释。一个大家所熟悉的例子是理发店的柱状旋转招牌形成的错觉——这个柱子实际上是绕着它的长轴旋转,但条纹看起来像是沿柱子方向向上运动①。红、白条纹边界上的任意点的实际运动方向垂直于柱子的长度方向。但脑却看到条纹沿柱子方向运动。图50解释了这个现象。

  皮层MT区的神经元几乎不对颜色敏感。不过其中一些对照度相同而仅由颜色差异形成的边界的运动有反应。这与皮层V4区的神经元形成鲜明对照。V4区的神经元对波长的反应很复杂,但对运动几乎不敏感。②它们的感受野通常很大,但在某些情况下神经元能对感受野内任意位置上具有恰当视觉特征的小物体作出反应。这个映射具有复杂的视网膜区域对应,但不像V1区那样简单。

  许多颜色反应是颜色视觉理论引导我们所期待的"双拮抗反应"。更重要的是,伦敦大学学院的神经生理学家赛米尔·泽奇(Semir Zeki)表明它们的行为具有兰德效应(见第四章)。它们的反应不仅仅取决于感受野中央和外周的光的波长,还受邻近表面的光的波长的强烈影响。大致说来,它们不是只对波长反应;而是对感受颜色反应,猕猴V4区的一个神经元对由不同颜色的长方形组成的图案中的一个红色色块反应。而泽奇自己也认为它是红色的。即使有照明光波长的干扰,从该色块到达视网膜的光的实际波长已有很大差别,该神经元仍能有反应。这显然是环境影响神经元行为的另一个例子。对于心理学家来说,认识到在某种程度上对环境的反应专门由单个神经元来加以表达,这一点很重要;他们应当在他们的理论模型中考虑这一点。

  图48给出了目前已知的视觉区域的示意图,但并未涉及它们之间的连接方式。一般而言,主要的信息流从左侧的皮层V1区开始,流向右侧远端靠近脑前部与皮层非视觉区交界处的那些区域。通常用一个粗略的映射大致代表这些投射,它意味着在接受区彼此邻近的轴突终端一般来自发送区相距不太远的神经元。这也会出现在没有视网膜区域对应的区域,比如在等级中较高层的区域。

  范·埃森和同事们试图采用由神经解剖学家凯瑟琳·洛克兰(Kathleen Rockland)和迪帕克·潘德亚(Deepak Pandya)最早提出的观点,把所有视觉区按照大致的等级作一排列。洛克兰和潘德亚特别指出,如果从A区到B区的投射集中在第4层,那么,从BA的反馈一般避开第4层而通常与第1层有强连接。我们已经看到在V1V2之间的连接出现过这种情况。如图51所示,可以相当简单地表示这种观点。从眼到脑的投射(主要集中于第4层)称为"向前投射",反方向的则称为"反向投射"

  这个关于第4层的连接的规则总是成立的吗?事实比较复杂。不过已经证明,使用图51的约定,有可能将已知的大部分连接用单个等级图表示。最新的一种形式见图52。(别忘了图中每根连线代表沿两个方向的大量轴突。)你不必因这张连接示意图的复杂细节望而生畏,只需注意到它体现了视觉处理的复杂性(如果你看不出其他东西的话)。极少有人会想到他们的脑是以这种方式构建的。

  关于第4层约定的协议有一些例外是值得重视的。例如在相同层次的皮层区之间有许多互连接。简单的第4层规则并不包括它们。因而在构建该图时使用了更为精细的规则。现在还不清楚真实的布局是否只是拟等级排列的,或者对这些更复杂规则的例外是否主要是由实验误差引起的,不管怎样,毫无疑问各个区域可以粗略地按一个近似等级的方式排列。如果存在例外的话,它是否具有特殊的意义呢?只有进一步的工作才能回答这个问题。的区域。所有连接是双向的,这个规则几乎总是对的,但也有例外。①随便说一句,图52并不打算显示连接强度(例如,每根直线代表多少轴突),这主要是因为这方面信息太少。图52中某些线代表上百万个轴突,其他的可能只有十万个,或者更少。

  皮层中邻近区域总是互相连接在一起吗?通常如此,但也有少量例外。

  等级排列也得到不同来源的证据的支持。它是不同区域神经元活动的一般规律,当我们沿着该等级上升时,其行为大致遵循两条规律:感受野的大小不断增加,因而在最高层区域的感受野通常覆盖整个半侧视野,甚至还部分地或全部包括了另外一半视野(这主要经过胼胝体连接来实现的)。此外,引起神经元反应的特征变得越发复杂。V2区的一些神经元对某些主观轮廓有反应,而MT区的一些神经元对略微简单的运动图案有反应(我们已经看到,它们能够解决或部分解决小孔问题)。MST区的神经元对整个视野内的运动有反应,有的发放对应于物体正在逐渐靠近并变大,有的则对应于物体在后移,V4区的神经元对颜色感受有反应,而不仅仅是光的波长。

  在较高皮层中,我们发现了对脸的正面有反应的神经元。它对脸相对于凝视中心的位置并不敏感,甚至当脸略微倾斜也不受影响。这样的神经元对由眼、鼻、嘴等随意组合成的图像几乎不反应。另外一些神经元对脸的侧面最敏感,另一方面,7a区的神经元主要对一个物体与头或身体的相对位置敏感,而不那么关心该物体是什么。后者是下颞叶(那些缩写中间是IT的区域,如CITd)的主要任务,这些己在识别脸的描述中提到过。几乎可以肯定还可以发现许多更复杂的反应。

  由此可知,一般每个区域从更低层区域接受若干输入。(这些低层区域提取的特征要比V1区所反应的相当简单的特征更复杂。)然后它对这些输入的组合进行运作,以便产生更为复杂的特征,并把它们传到等级中的更高层次上。同时,信息分成若干相互作用的流顺着等级向上流动。我们已经看到了一些例子,如来自视网膜的部分分离的M信号和P信号,从V1V2来的三支信息流,以及更高层次上的"是什么""在哪里"。但必须强调这些流之间常常有某些信息交换。

  反向通道又怎样呢?这也迫切需要更详细的研究。人们可以想像它们的各种功能。它们也许能帮助形成前面提到的非传统感受野,从而允许高层次的行为影响较低的层次。它们也可能属于这样一个高层次系统:当较低层区域的操作己在略为全局的层次上获得了成功时,则向它们发回信号,表示应当对其突触进行修正,以便将来能更容易地探测出这个特征。它们还可能与注意机制和进行视觉想像的机制紧密相关。它们或许对神经振荡同步(见第十七章)有作用。这些仅仅具有一定的可能性,但其中哪些是事实尚有待进一步考察。

  此外,整个系统看起来并不像一个的固定不变的反应装置。它更像是由许多以相当高的速度传导的瞬间动态相互作用所控制的。最后,我们不要忘记我所描述过的一切是应用于猕猴而不是我们人类的。当然我们有理由假设我们自己的视觉系统与猕猴相似,但这仅仅是个假设。就我们目前的全部知识而言,差异可能不仅在细节上,而且还可能在其复杂性上。

  如果新皮层有某些秘密的话,这就是它有能力在处理等级上进化出新的层次,特别是在那些等级较高的层次更是如此。这些额外层次的处理可能是区别人或高级动物与刺猬这样的低级动物的特征。我猜测新皮层使用了一些特殊的学习算法,使得尽管每个皮层区域包含在复杂的处理等级上,但它们各自都能从经验中提取新的类型。这种能力可能使大脑皮层区别于其他形式的神经结构,如小脑和纹状体(它们并没有这种复杂形式的等级)。

  这些观点都只是推测,但有一件事情相当清楚:虽然有许多不同的视觉区域,每一个区域以不同的复杂的方式分析视觉输入,但是,迄今为止无法定位出单个区域,其神经活动精确对应于我们看到的眼前的世界的生动图像,看着图52,人们也许会想,这一切或许发生在某些更为高级复杂的结构(如海马)以及与之相关的皮层结构(标记为HCER)当中。它们位于等级的顶端。但是我们在第十二章 将会看到,一个人可能会丧失脑的两侧的所有这些区域,但仍报告说他能很好地看到外界事物,而且他的行为表现似乎也是如此。简而言之,虽然我们知道脑如何分解视觉图像,但我们仍不知道它如何将它们整合在一起的,它又是如何构建出视野中所有物体及其行为的组织良好的详细的视觉觉知呢?

  ①同一物种的不同猴子的条纹和斑点的准确图案大致相似,但在细节上并不完全一样。即使对一只猴子而言,脑一侧的图案与另一侧也不相同。这就好像你左手的指纹与右手并不完全一样,由于同样的原因,这种细节多少依赖于发育过程中的偶然事件。我们又一次面对这种形式,它具有某种程度的秩序,但细节上则是显著的杂乱无章。

  ①最大的混乱在于这种细胞是否可能完成视觉场景的付氏变换。从字面上讲这是荒谬的。在任何情况下,它们更适于完成伽柏(Cabor)变换。但甚至这种观点是否有实际用途尚有待确定。可以肯定的是,某些神经元对细微的细节(它们常被称作"空间频率")反应最佳,而其他一些神经元则对中间或更粗糙的细节反应更好。

  ①如图15所示,它们可能参与形成由直线端点构成的错觉轮廓。

  ①前者相应于一个衰减的余弦波,而后者相应于衰减的正弦波。

  ①这有助于我们去领会在展平的皮层表面显示凝视中心及视野的水平和垂直子午线的位置的那些标志。

  ②主观轮廓,也称作"错觉轮廓",是我们看到的一些虚假的直线,它们实际上在视野中并不存在(如图2和图15)。

  ①我称之为"反向投射",因为习惯上把从视网膜到侧膝体到V1期后到V2的广泛的信息流认为是"向前的"。人工智能领域的工作者通常用自下而上这个术语来代替"向前的"一词。他们称相反方向的信息流为自上而下的。

  ①从数学的角度讲,某些位置的高斯曲率远偏离0

  ①最近,哈佛医学院的理查德·波恩(RichardBorn)和罗杰·图特尔(RogerTootell)显示在果猴MT区有两种类型的神经元,每一种都存在于许多小的柱状簇之中。第一种类型的行为与文中的描述大致相同,第二种类型的神经元,其外周并不抑制反而增强神经元的主要反应。

  ①该方向也可能向下,这取决于柱子的旋转方向以及条纹画的方式。

  ②V4区很大,事实上,范·埃森把它分成三个子区:V4tV4dV74v

  (1V4V1的反向投射很强,但从VIV4的向前投射通常很弱,或者没有。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
大脑暗能量
【每日一书】0615.《进化的大脑》
光环境或影响新生儿大脑发育
科技网 --《科技日报》-- 大脑具有惊人可塑性
再不动脑, 真的会傻
大脑简史(1)-历史上的大事件
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服