打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
机械式的液压动力转向、电动助力转向
机械式的液压动力转向系统一般由液压泵油管、压力流量控制阀体、V型传动皮带、储油罐等部件构成。无论车是否转向,这套系统都要工作,而且在大转向车速较低时,需要液压泵输出更大的功率以获得比较大的助力。所以,也在一定程度上浪费了资源。可以回忆一下:开这样的车,尤其是低速转弯的时候,觉得方向比较沉,发动机也比较费力气。又由于液压泵的压力很大,也比较容易损害助力系统。机械式液压助力转向系统由液压泵及管路和油缸组成,为保持压力,不论是否需要转向助力,系统总要处于工作状态,能耗较高,这也是耗资源的一个原因所在。一般经济型轿车使用机械液压助力系统的比较多
中文名机械液压助力
外文名Mechanical hydraulic booster
原    理机械液压助力转向系统
分    类常压式液压助力,常流式液压助力
诞生时间1902年
组成部分液压泵、油管、压力流体控制阀
目录
1原理
2分类
1原理编辑
机械液压助力转向系统
机械液压助力,这种助力形式是我们最常见的一种,前面提到它诞生于1902年,也就是说已经有了百年历史。由于技术成熟可靠,而且成本低廉,得以被广泛普及。
机械液压助力系统的主要组成部分有液压泵、油管、压力流体控制阀、V型传动皮带、储油罐等等。这种助力方式是将一部分发动机动力输出转化成液压泵压力,对转向系统施加辅助作用力,从而使轮胎转向。
2分类编辑
根据系统内液流方式的不同,可以分为常压式液压助力和常流式液压助力。常压式液压助力系统的特点是无论方向盘处于正中位置还是转向位置、方向盘保持静止还是在转动,系统管路中的油液总是保持高压状态;而常流式液压转向助力系统的转向油泵虽然始终工作,但液压助力系统不工作时,油泵处于空转状态,管路的负荷要比常压式小,现在大多数液压转向助力系统都采用常流式。可以看到,不管哪种方式,转向油泵都是必备部件,它可以将输入的发动机机械能转化为油液的压力。
由于依靠发动机动力来驱动油泵,能耗比较高,所以车辆的行驶动力无形中就被消耗了一部分;液压系统的管路结构非常复杂,各种控制油液的阀门数量繁多,后期的保养维护需要成本高;整套油路经常保持高压状态,使用寿命也会受到影响,这些都是机械液压助力转向系统的缺点所在。
能被广泛使用自然也是不缺优势的,这里列举一二:方向盘与转向轮之间全部是机械部件连接,操控精准,路感直接,信息反馈丰富;液压泵由发动机驱动,转向动力充沛,大小车辆都适用;技术成熟,可靠性高,平均制造成本低。
电动助力转向系统(Electric Power Steering,缩写EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(Hydraulic Power Steering)相比,EPS系统具有很多优点。EPS主要由扭矩传感器、车速传感器、电动机、减速机构和电子控制单元(ECU)等组成。
中文名电动助力转向系统
外文名Electric Power Steering
英文简称EPS
构成部件扭矩传感器、车速传感器等
发展历史四个阶段
发明者日本Honda公司
发明时间1990年
目录
1发展历史
2种类及优点
3产品特点
4工作原理
5关键技术
6工作过程
7发展趋势
1发展历史编辑
汽车的发展历程中,转向系统经历了四个发展阶段:
从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。
装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员的转向操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统。但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本Koyo公司推出了具备车速感应功能的电控液压助力转向系统。这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。到了1988年,日本Suzuki公司首先在小型轿车Cervo上配备了Koyo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。
2种类及优点编辑
我们常见的助力转向有机械液压助力、电子液压助力、电动助力三种。
机械液压助力
机械液压助力是我们最常见的一种助力方式,它诞生于1902年,由英国人Frederick W. Lanchester发明,而最早的商品化应用则推迟到了半个世纪之后,1951年克莱斯勒把成熟的液压转向助力系统应用在了Imperial车系上。由于技术成熟可靠,而且成本低廉,得以被广泛普及。
机械液压助力系统的主要组成部分有液压泵、油管、压力流体控制阀、V型传动皮带、储油罐等等。这种助力方式是将一部分发动机动力输出转化成液压泵压力,对转向系统施加辅助作用力,从而使轮胎转向。
电子液压助力
由于机械液压助力需要大幅消耗发动机动力,所以人们在机械液压助力的基础上进行改进,开发出了更节省能耗的电子液压助力转向系统。 这套系统的转向油泵不再由发动机直接驱动,而是由电动机来驱动,并且在之前的基础上加装了电控系统,使得转向辅助力的大小不光与转向角度有关,还与车速相关。机械结构上增加了液压反应装置和液流分配阀,新增的电控系统包括车速传感器、电磁阀、转向ECU等。
电动助力
EPS就是英文Electric Power Steering的缩写,即电动助力转向系统。电动助力转向系统是汽车转向系统的发展方向。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。正是有了这些优点,电动助力转向系统作为一种新的转向技术,将挑战大家都非常熟知的、已具有50多年历史的液压转向系统。
驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转矩电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。
优势优点
相比传统液压动力转向系统,电动助力转向系统具有以下优点:
1、只在转向时电机才提供助力,可以显著降低燃油消耗
传统的液压助力转向系统由发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。因此,电动助力转向系统可以降低车辆的燃油消耗。
与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。
2、转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。
传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。
电动助力转向系统提供的助力大小可以通过软件方便的调整。在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。
电动助力转向系统还可以施加一定的附加回正力矩或阻尼力矩,使得低速时转向盘能够精确的回到中间位置,而且可以抑制高速回正过程中转向盘的振荡和超调,兼顾了车辆高、低速时的回正性能。
3、结构紧凑,质量轻,生产线装配好,易于维护保养
电动助力转向系统取消了液压转向油泵、油缸、液压管路、油罐等部件,而且电机及减速机构可以和转向柱、转向器做成一个整体,使得整个转向系统结构紧凑,质量轻,在生产线上的装配性好,节省装配时间,易于维护保养。
4、通过程序的设置,电动助力转向系统容易与不同车型匹配,可以缩短生产和开发的周期。
由于电动助力转向系统具有上述多项优点,因此近年来获得了越来越广泛的应用。
电动助力转向系统是在机械式转向系统的基础上,加装了电机及减速机构、转矩转角传感器、车速传感器和ECU电控单元而成。
3产品特点编辑
液压助力转向系统已发展了半个多世纪,其技术已相当成熟。但随着汽车微电子技术的发展,对汽车节能性和环保性要求不断提高,该系统存在的耗能、对环境可能造成的污染等固有不足已越来越明显,不能完全满足时代发展的要求。
电动助力转向系统将最新的电力电子技术和高性能的电机控制技术应用于汽车转向系统,能显著改善汽车动态性能和静态性能、提高行驶中驾驶员的舒适性和安全性、减少环境的污染等。因此,该系统一经提出,就受到许多大汽车公司的重视,并进行开发和研究,未来的转向系统中电动助力转向将成为转向系统主流,与其它转向系统相比,该系统突出的优势体现在:
一、降低了燃油消耗。
液压动力转向系统需要发动机带动液压油泵,使液压油不停地流动,浪费了部分能量。相反电动助力转向系统(EPS)仅在需要转向操作时才需要电机提供的能量,该能量可以来自蓄电池,也可来自发动机。而且,能量的消耗与转向盘的转向及当前的车速有关。当转向盘不转向时,电机不工作,需要转向时,电机在控制模块的作用下开始工作,输出相应大小及方向的转矩以产生助动转向力矩,而且,该系统在汽车原地转向时输出最大转向力矩,随着汽车速度的改变,输出的力矩也跟随改变。该系统真正实现了"按需供能",是真正的"按需供能型"(on-demand)系统。汽车在较冷的冬季起动时,传统的液压系统反应缓慢,直至液压油预热后才能正常工作。由于电动助力转向系统设计时不依赖于发动机而且没有液压油管,对冷天气不敏感,系统即使在-40℃时也能工作,所以提供了快速的冷起动。由于该系统没有起动时的预热,节省了能量。不使用液压泵,避免了发动机的寄生能量损失,提高了燃油经济性,装有电动助力转向系统的车辆和装有液压助力转向系统的车辆对比实验表明,在不转向情况下,装有电动助力转向系统的国辆燃油消耗降低2.5%,在使用转向情况下,燃油消耗降低了5.5%。
二、增强了转向跟随性。
在电动助力转向系统中,电动助力机与助力机构直接相连可以使其能量直接用于车轮的转向。该系统利用惯性减振器的作用,使车轮的反转和转向前轮摆振大大减水。因此转向系统的抗扰动能力大大增强和液压助力转向系统相比,旋转力矩产生于电机,没有液压助力系统的转向迟滞效应,增强了转向车轮对转向盘的跟随性能。
三、改善了转向回正特性。
直到今天,动力转向系统性能的发展已经到了极限,电动助力转向系统的回正特性改变了这一切。当驾驶员使转向盘转动一角度后松开时,该系统能够自动调整使车轮回到正中。该系统还可以让工程师们利用软件在最大限度内调整设计参数以获得最佳的回正特性。从最低车速到最高车速,可得到一簇回正特性曲线。通过灵活的软件编程,容易得到电机在不同车速及不同车况下的转矩特性,这种转矩特性使得该系统能显著地提高转向能力,提供了与车辆动态性能相机匹配的转向回正特性。而在传统的液压控制系统中,要改善这种特性必须改造底盘的机械结构,实现起来有一定困难。
四、提高了操纵稳定性。
通过对汽车在高速行驶时过度转向的方法测试汽车的稳定特性。采用该方法,给正在高速行驶(100km/h)的汽车一个过度的转角迫使它侧倾,在短时间的自回正过程中,由于采用了微电脑控制,使得汽车具有更高的稳定性,驾驶员有更舒适的感觉。
五、提供可变的转向助力。
电动助力转向系统的转向力来自于电机。通过软件编程和硬件控制,可得到覆盖整个车速的可变转向力。可变转向力的大小取决于转向力矩和车速。无论是停车,低速或高速行驶时,它都能提供可靠的,可控性好的感觉,而且更易于车场操作。
对于传统的液压系统,可变转向力矩获得非常困难而且费用很高,要想获得可变转向力矩,必须增加额外的控制器和其它硬件。但在电动助力转向系统中,可变转向力矩通常写入控制模块中,通过对软件的重新编写就可获得,并且所需费用很小。
六、采用"绿色能源",适应现代汽车的要求。
电动助力转向系统应用"最干净"的电力作为能源,完全取缔了液压装置,不存在液压助力转向系统中液态油的泄漏问题,可以说该系统顺应了"绿色化"的时代趋势。该系统由于它没有液压油,没有软管、油泵和密封件,避免了污染。而液压转向系统油管使用的聚合物不能回收,易对环境造成污染。
七、系统结构简单,占用空间小,布置方便,性能优越。
由于该系统具有良好的模块化设计,所以不需要对不同的系统重新进行设计、试验、加工等,不但节省了费用,也为设计不同的系统提供了极大的灵活性,而且更易于生产线装配。由于没有油泵、油管和发动机上的皮带轮,使得工程师们设计该系统时有更大的余地,而且该系统的控制模块可以和齿轮齿条设计在一起或单独设计,发动机部件的空间利用率极高。该系统省去了装于发动机上皮带轮和油泵,留出的空间可以用于安装其它部件。许多消费者在买车时非常关心车辆的维护与保养问题。装有电动助力转向系统的汽车没有油泵,没有软管连接,可以减少许多忧虑。实际上,传统的液压转向系统中,液压油泵和软管的事故率占整个系统故障的53%,如软管漏油和油泵漏油等。
八、生产线装配性好。
电动助力转向系统没有液压系统所需要的油泵、油管、流量控制阀、储油罐等部件,零件数目大大减少,减少了装配的工作量,节省了装配时间,提高了装配效率。
电动助力转向系统自20世纪80年代中期初提出以来,作为今后汽车转向系统的发展方向,必将取代现有的机械转向系统、液压助力转向系统和电控制液压助力转向系统。
4工作原理编辑
转向柱
转向传动轴
转向机
护罩
转向拉杆
助力电机
电助力转向系统的工作原理如下:首先,转矩传感器测出驾驶员施加在转向盘上的操纵力矩,车速传感器测出车辆当前的行驶速度,然后将这两个信号传递给ECU;ECU根据内置的控制策略,计算出理想的目标助力力矩,转化为电流指令给电机;然后,电机产生的助力力矩经减速机构放大作用在机械式转向系统上,和驾驶员的操纵力矩一起克服转向阻力矩,实现车辆的转向。
5关键技术编辑
电动助力转向系统的关键技术主要包括硬件和软件两个方面。
硬件技术主要涉及传感器电机ECU。传感器是整个系统的信号源,其精度和可靠性十分重要。电机是整个系统的执行器,电机性能好坏决定了系统的表现。ECU是整个系统的运算中心,因此ECU的性能和可靠性至关重要。
软件技术主要包括控制策略和故障诊断与保护程序两个部分。控制策略用来决定电机的目标电流,并跟踪该电流,使得电机输出相应的助力矩。故障诊断与保护程序用来监控系统的运行,并在必要时发出警报和实施一定的保护措施。
6工作过程编辑
电动助力转向系统(EPS)作为传统液压系统的替代产品已经进入汽车制造领域。与先前的预测相反,EPS不仅适用于小型汽车,而且某些12V中型汽车也适于安装电动系统。EPS系统包含下列组件:转矩传感器,检测转向轮的运动情况和车辆的运动情况;电控单元,根据转矩传感器提供的信号计算助力的大小; 电机,根据电控单元输出值生成转动力;减速齿轮,提高电机产生的转动力,并将其传送至转向机构。
其它车辆系统控制算法输入信息是由汽车CAN总线提供的(例如转向角和汽车速度等等)。电机驱动还需要其它信息,例如电机转子位置(电机传感器提供)和相电流(电流传感器提供)。电机由四个MOSFET控制。由于微控制器无法直接驱动MOSFET的大型栅电容,因此需要采用驱动IC形式的接口。出于安全考虑,完整的电机控制系统必须实施监控。将电机控制系统集成在PCB上,通常包含一个继电器,该继电器可作为主开关使用,在检测出故障的情况下,断开电机与电控单元。
微控器(μC)必须控制EPS系统的直流有刷电机。微控器根据转矩传感器提供的转向轮所需转矩信息,形成一个电流控制回路。为了提高系统的安全水平,该微控器应有一个板载振荡器,这样即使在外部振荡器出现故障的情况下,亦可确保微控器的性能,同时还应具备片上看门狗。英飞凌公司的XC886集成了所有重要的微控器组件,其它安全特性可通过软件实现,如果必须执行IEC61508等行业安全标准规范,就不得不完成各种诊断和自检任务,因而会增加微控器的工作负荷。目前不同客户采用的转矩传感器与转子位置传感器差别很大。他们采用不同的测量原理,如分解器、电磁共振器、基于传感器的集成巨磁阻(IGMR)。
功率级的作用是开关电机电流。该功率级具有两个功能:驱动IC控制和保护MOSFET,MOSFET本身又可负责开关电流。MOSFET和分区(例如驱动IC与MOSFET结合在一个器件或多个器件内)由电机功率决定。
微控器的PWM输出端口提供的驱动电流和电压太低,无法直接与MOSFET栅极实现连接。驱动IC的作用是提供充足的电流,为MOSFET的栅极进行充电和放电,使其在20kHz的条件下正常实现开关,同时保证为高低侧MOSFET提供高栅源电压Vgs,确保获得低导通电阻。如果高侧MOSFET处于开通状态,源极电位就接近电池电平。要想使MOSFET到达标称导通电阻,栅源电压需高于8V。MOSFET完全导通所需的最理想的电压是10V或以上,因此所需的栅极电位就比电池电压高出10V。电荷泵是确保该功能最大程度降低MOSFET功耗(即使低电池电压条件下)的电路。图2说明,英飞凌驱动IC即使在8V电池电压条件下,其低高侧MOSFET的栅源电压也可达到11V。这将确保在低电池电压条件下,获得低功耗和高系统效率。
电荷泵设计的其它关键特性是可以根据不同PWM模式的要求,实现极低(低至1%)和极高的占空比(高至100%)。驱动IC的另一个重要功能是检测短路情况,避免损坏MOSFET。受影响的MOSFET将关闭,诊断结果提交给微控器。电流水平可实现调节。
MOSFET通常应用在一个多半桥拓扑结构内,由驱动IC控制。根据ISO7637规定,在12V电网中,电池电压通常可高达16V。在选择MOSFET电压级别时,必须针对二极管恢复过程中所出现的感应瞬变现象提供足够的安全边际(Ls x dl/dt,Ls代表杂散电感,dl/dt代表开关时的电流斜率)。在低dl/dt和低杂散电感的系统中,可使用30V MOSFET,但通常最好使用40V的MOSFET,可提供更高的安全边际。最新的40V MOSFET技术采用D2PAK(TO263)封装在2mm和180A条件下,以及采用较小的DPAK(TO252)装封在低于4mm和90A的条件,可提供极低的导通电阻,使EPS系统设计具备极高的功率密度和效率。
7发展趋势编辑
转向系统是汽车的主要子系统之一,其性能直接关系到汽车的操纵稳定性和舒适性,对于确保行车安全、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要的作用。
助力转向系统经历了纯机械式、液压式、电控液压式、电动助力式以及处于研制阶段的线控式几个阶段。传统的动力转向系统一般采用液压助力,其结构复杂、功率消耗大、易泄漏、转向助力不易控制。因此汽车工程师一直在寻求一种更好的助力方式,以获得较强的路感、较轻的操纵力、较好的回正性、较高的抗干扰能力和较快的响应性。
上个世纪80年代开始,人们开始研究电子控制式电动助力转向,简称EPS(Electric Power Steering)。EPS是在EHPS(电控液压助力转向)的基础上发展起来的,其结构简单、零件数量大大减少、可靠性增强,它取消EHPS的液压油泵、液压管路、液压油缸和密封圈等配件,纯粹依靠电动机通过减速机构直接驱动转向机构,解决了长期以来一直存在的液压管路泄漏和效率低下的问题。
EPS的工作原理及特点
电动助力转向系统是在传统机械转向系统的基础上发展起来的。它利用电动机产生的动力来帮助驾驶员进行转向操作,系统主要由三大部分构成,信号传感装置(包括扭矩传感器、转角传感器和车速传感器),转向助力机构(电机、离合器、减速传动机构)及电子控制装置。电动机仅在需要助力时工作,驾驶员在操纵转向盘时,扭矩转角传感器根据输入扭矩和转向角的大小产生相应的电压信号,车速传感器检测到车速信号,控制单元根据电压和车速的信号,给出指令控制电动机运转,从而产生所需要的转向助力。其结构示意图如图1所示。
与传统的液压助力转向相比,EPS系统具有一系列的优点。
(1)节约了能源消耗。没有转向油泵,且电动机只是在需要转向时才接通电源,所以动力消耗和燃油消耗均可降到最低。
(2)对环境无污染。该系统应用电力作为能源,消除了由于转向油泵带来的噪声污染。也不存在液压助力转向系统中液压油的泄漏与更换而造成的污染。同时该系统由于没有使用不可回收的聚合物组成的油管、油泵和密封件等配件,从而避免了污染。
(3)增强了转向跟随性。在电动助力转向系统中,电动机与助力机构直接相连,可以使其能量直接用于车轮的转向。该系统利用惯性减振器的作用,使车轮的反转和转向前轮摆振大大减小。因此转向系统的抗扰动能力大大增强。和液压助力转向系统相比,旋转力矩产生于电机,没有液压助力系统的转向迟滞效应,增强了转向车轮对转向盘的跟随性能。
(4)改善了回正特性。由于采用了微电子技术,利用软件控制电动机动作,在最大限度内调整设计参数以获得最佳的回正特性。从最低车速到最高车速,可得到一簇回正特性曲线,通过编程实现电机在不同车速及不同车况下的转矩特性,这些转矩特性使得该系统能显著提高转向能力,提供了与车辆动态性能相匹配的转向回正特性,而传统的液压助力转向系统无法做到这一点。
(5)提高了操纵稳定性。当驾驶员转动转向盘一角度,然后松开时,EPS系统能够自动调整使车轮回正。同时还可利用软件在最大限度内调整设计参数以获得最佳的回正特性。而在传统的液压控制系统中,要改善这种特性必须改造底盘的机械结构,实现起来很困难。
(6)系统结构简单,占用空间小,布置方便。由于该系统具有良好的模块化设计,所以不需要对不同的系统重新进行设计、试验、加工等,不仅节省了费用,也为设计不同的系统提供了极大的灵活性,而且更易于生产线装配。相对于液压助力转向系统,EPS没有油泵、油管和发动机上的皮带轮,使得设计该系统时有更大的余地,而且该系统的控制模块可以和齿轮齿条设计在一起或单独设计,发动机部件的空间利用率极高。
EPS的分类
电动助力转向系统按照电动机布置位置的不同,可以分为:转向柱助力式(Column-assist type EPS)、齿轮助力式(Pinion-assist type EPS)、齿条助力式(Rack-assist type EPS)、直接助力式(Direct-drive type EPS)四种。
转向柱助力式电动助力转向器(C-EPS)的助力电机固定在转向柱的一侧,通过减速增扭机构与转向轴相连,直接驱动转向轴助力转向(图2)。这种形式的电动助力转向系统结构简单紧凑、易于安装。现在多数EPS就是采用这种形式。此外,C-EPS的助力提供装置可以设计成适用于各种转向柱,如固定式转向柱、斜度可调式转向柱以及其它形式的转向柱。但由于助力电机安装在驾驶舱内,受到空间布置和噪声的影响,电机的体积较小,输出扭矩不大,一般只用在小型及紧凑型车辆上。
齿轮助力式电动助力转向器(P-EPS)的助力电机和减速增扭机构与小齿轮相连,直接驱动齿轮实现助力转向(图3)。由于助力电机不是安装在乘客舱内,因此可以使用较大的电机以获得较高的助力扭矩,而不必担心电机转动惯量太大产生的噪声。该类型转向器可用于中型车辆,以提供较大的助力。
齿条助力式电动助力转向器(R-EPS)的助力电机和减速增扭机构则直接驱动齿条提供助力(图4)。由于助力电机安装于齿条上的位置比较自由,因此在汽车的底盘布置时非常方便。同时,同C-EPS和P-EPS相比,可以提供更大的助力值,所以一般用于大型车辆上。
直接助力式电动助力转向器(D-EPS)的助力电机和减速增扭机构同转向齿轮形成了一个独立的单元(图5)。它与R-EPS比较相似,两者的主要区别是扭矩传感器的安装位置有所不同。通过优化电控单元(ECU)内部的算法,让电机向齿条直接提供转向助力可以获得良好的转向路感。
EPS技术国内外研究现状
从EPS控制策略的发展趋势来看,今后控制信号将不再仅仅依靠车速与扭矩信号,而是根据转向角、转向速度、横向加速度、前轴重力等多种信号进行与汽车特性相吻合的综合控制,以获得更好的转向路感。目前已经开始这方面的研究。
从国内外的研究来看,EPS今后的研究主要集中在以下几方面:
(1)EPS助力控制策略。助力控制是在转向过程中为减轻转向盘的操纵力,通过减速机构把助力电机的力矩作用到机械转向系上的一种基本控制模式。助力控制策略的主要目的是根据转向助力特性曲线确定助力电动机的助力大小,辅助驾驶员实现汽车转向。控制策略是EPS研究的重点。
(2)系统匹配技术。助力特性的匹配、电机及减速机构的匹配、传感器的匹配以及EPS系统与其它子系统进行匹配,是使整车性能达到最优的关键。
(3)可靠性。转向系统是驾乘人员的“生命线”之一,必须保证高度可靠性。EPS除了应有良好的硬件保证外,还需要良好的软件做支撑,因此对 EPS的可靠性提出了很高的要求。
电动助力转向系统经过近二十多年的发展,技术日趋成熟,其应用范围从最初的前轴负荷较小的转向柱助力式EPS微型轿车向前轴负荷较大的大型轿车、商用客车、货车方向发展,EPS系统的助力形式也由低速、转向柱助力型向全速、齿条助力型发展。
由于技术、制造和维修成本等原因,目前汽车转向系统仍以液压助力的HPS(包括 ECHPS、EHPS)为主。线控转向系统由于成本高以及现有法规限制等原因,在近期很难在车辆上装配。EPS具有节能与环保等诸多优点,EPS取代HPS是今后一段时间内汽车转向系统发展的趋势。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
汽车底盘:智电底盘,下一个风口
电动助力转向系统EPS分类、助力原理、助力策略简介
NSK:面向未来汽车的电动助力转向系统
车辆未启动,原地打方向盘对车辆是否有伤害?
电动助力转向技术分析
汽车电动助力转向系统研究现状及趋势
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服