打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
血管作为神经干细胞特性的调节剂</font></font>
前摩尔神经科学2019; 12:85。
在线发布于2019年4月12日 .doi:  10.3389 / fnmol.2019.00085
PMCID:PMC6473036
PMID:31031591

Andromachi Karakatsani1, Bhavin沙1,卡门Ruiz的德阿莫多瓦1,2,*

本文已被PMC中其他文章引用

抽象

在中枢神经系统(CNS)中,血管和神经腔室之间的精确通讯对于正常发育和功能至关重要。最近的研究表明,某些神经元群体在发育过程中会分泌各种分子线索来调节脊髓和大脑中的血管生长和模式。有趣的是,脉管系统正在成为调节新皮层发育以及成年期间干细胞生态位的重要组成部分。在这篇评论文章中,我们将首先概述胚胎和成年神经源性利基血管的发育和维持。我们还将总结当前对血管源性信号如何影响早期发育以及成年期神经干细胞(NSC)行为的理解,

关键词:血管,发育,成人神经发生,神经血管,NPC,NSC,代谢调节

中枢神经系统神经和血管腔的伴随发展

在鼠模型中,当神经板形成神经管时,中枢神经系统(CNS)在E7.5–E8左右开始发育。在尾-尾轴处,神经管开始分配到由前脑,中脑和后脑组成的鼻小泡中,而尾小泡发育成脊髓。随后是广泛水平的祖细胞增殖,分化和神经元的迁移,这些神经元迁移到它们的特定区域并在其中连接并形成突触。哺乳动物新皮层(前脑源性脑末梢区域)是由单层增殖祖细胞(神经上皮细胞)产生的六层神经元定义的,这些细胞在其顶叶基底轴上呈高度极化状态(Breunig等,2011))。这种祖细胞群称为radial神经胶质细胞(RGCs,也称为CNS的原代神经干细胞(NSCs); Rakic,2009年; Rash等人,2018年),最初(E10.5-E12.5)经历了大规模对称分裂扩大,然后分化为神经元或基底祖细胞(BP; Tbr2 +,E12.5起; Paridaen和Huttner,2014图1A)。他们后来经历了最终的对称分裂,也产生了锥体神经元(Martínez-Cerdeño等,2006)。生成后,有丝分裂后神经元使用神经胶质(RGC)依赖性的迁移模式,然后使用神经胶质非依赖性的迁移模式,最终获得它们在皮质中的位置(Nadarajah等,2001)。

(一)发展中的小鼠新皮层的插图。在E8.5到E10.5时,组织缺氧,主要带有来自神经上皮细胞的顶端祖细胞(RGC,灰色)。在此期间已经建立了PNVP。PVP进入,降低了缺氧,大约在E11.5之前发生,随后通过RGC的不对称分裂生成其他细胞类型,如Tbr2 + BP(黄色)和神经元(蓝色)。PNVP,神经周围血管丛;PVP,脑室周围神经丛;RGC,放射状胶质细胞;BP,基础祖细胞;EC,内皮细胞。(B)在中枢神经系统(CNS)发育中介导生存,生长和增殖的血管源性提示。

最近的研究表明,中枢神经系统在形成神经室的同时被血管化。两个独立的血管神经丛,即神经周围神经丛(PNVP /皮血管)和脑室周围神经丛(PVP),有助于中枢神经系统血管化。在E8.5和E10之间,中枢神经系统开始被中胚层衍生的成血管细胞产生的PNVP血管化(Hogan等,2004; Engelhardt和Liebner,2014)。该神经丛通过E9覆盖了整个中枢神经系统,但是,在其发育过程中似乎缺乏任何时空梯度(Vasudevan等,2008)。当PNVP已经通过E9包裹中枢神经系统时,血管从PVP进入皮层发生在2天后,大约E11.5(Vasudevan等,2008)。)。PVP来源于位于基底神经节原基的基底血管,该基底血管来自颈咽弓弓动脉(Hiruma等,2002)。与从PNVP萌发的血管相反,PVP的萌发从E11开始侵入新皮层,显示出发育梯度,这是由腹侧和背侧同源盒转录因子的特定线索指示的(Vasudevan等人,2008年))。来自新皮层的脉管(PNVP)的芽苗也通过E12.5径向侵入皮层,这是PVP衍生的芽已经进入并开始在皮层的中间区域(脑室下区域,SVZ)分支的时间点。随后,在神经实质内,从PNVP和PVP分支发芽并融合以建立发育中的皮层的血管网络(图1A; Vasudevan等,2008)。

发育过程中血管与NSC / NPC的关联

在生长和再生过程中,来自不同组织(例如胰腺,肝脏,脂肪组织和中枢神经系统)的干细胞在靠近血管的地方生长,这些血管提供氧气和营养,以满足干细胞的高代谢需求(Rafii等。 ,2016年)。另外,血管源性分子除了充当氧气和营养的行为外,还可以调节干细胞的特性。它被很好地描述内皮细胞(EC)和造血干细胞(HSC)的直接关联调节造血干细胞的自我更新和分化经由 angiocrine导出的信号(Rafii等人,2016)。造血干细胞和胚胎造血干细胞具有相似的分子和遗传特征(Ivanova et al。,2002),表明它们对不同血管内分泌线索的反应也很常见。虽然成年神经发生中充分描述了EC调节NSC的血管分泌潜力(见下文),但在发育过程中知之甚少。下面,我们描述了在发育中的小鼠大脑中针对该主题的一些研究。

胚胎神经干细胞和血管在发育过程中的协会

尽管特征不如成人NSC,但多项体外研究已经确定了胚胎NSC与脉管系统的关联。ECs与胚胎神经祖细胞(NPC)共培养时,可通过未知的可溶性因子促进干细胞的维持(Gama Sosa等,2007; Vissapragada等,2014)。还显示了类似的ECs与胚胎小鼠脊髓干细胞共培养系统可增强NSC存活并保持其多能性(Lowry等,2008)。一项有趣的研究使用了与脑EC共同培养的新生儿NSC,揭示了这些细胞通过 NSC表达的整联蛋白α6β1和EC表达的层粘连蛋白的物理相互作用(Rosa等,2016)。这种相互作用部分通过 Notch和雷帕霉素(mTOR)信号转导级联的哺乳动物靶标促进了NSC的增殖(Rosa et al。,2016)。

对发育中的后脑的研究表明,RC2阳性的NPC过程与生发区脉管系统发生物理相互作用(Tata等,2016)。与后脑相比,在新皮质中,PVP模式与Tbr2 + BP的产生相吻合,并且这些祖细胞与传入的PVP紧密相关(Javaherian和Kriegstein,2009年)。有趣的是,在由于异位表达血管内皮生长因子(VEGF)而导致脉管系统异常的情况下,Tbr2 +细胞仍然紧密相连并与发育中的脉管系统保持一致(Javaherian和Kriegstein,2009年)),因此进一步强调了血管系统对祖细胞增殖的需求。然而,描述它们的缔合的分子机制仍有待阐明。

中枢神经系统被包括硬脑膜,蛛网膜和硬脑膜的脑膜覆盖并保护。这些层富含血液和淋巴管以及神经供应。有趣的是,在对比的是神经前体栖息的实质组织的一般概念,越来越多的证据表明,脑膜也含有具有神经源性签名和向CNS形成(Bifari等人,多能干细胞。2009年2015年2017年 ; Decimo等人,2011 ; Nakagomi等人,2012 ; Ninomiya等人,2013 ; Kumar等人,2014)。这些静止的放射状神经胶质样,巢蛋白阳性干细胞在E13.5–E16.5期间产生,在出生后早期便迁移到新皮层,并分化为功能性皮层神经元和投射神经元(Bifari等人,2017年)。脑膜血液和淋巴管是否调节这些干细胞的性质尚不清楚。

值得一提的是,少突胶质前体细胞(OPC)是一种会产生成熟少突胶质细胞的神经胶质细胞,在发育过程中也会与血管结合(Seo等,2014 ; Maki等,2015 ; Tsai等。 。,2016)。在存在细胞外信号提示的情况下,培养物中的OPC可以重新编程为多能CNS干细胞,可以自我更新并产生少突胶质细胞,星形胶质细胞和神经元(Kondo和Raff,2000; Gaughwin等,2006)。试图推测这些细胞外信号可能是由局部脉管系统响应生长组织的特定需求而引发的。

血管来源的细胞外基质(ECM)对于for骨神经胶质末端的正确附着和NSC与血管的相互作用是必需的。最近的一份报告显示,内皮Dab1信号调节发育中的大脑中层粘连蛋白和整联蛋白介导的RGC和星形胶质细胞的缔合(Segarra等,2018)。内皮细胞Dab1的丢失会减少层粘连蛋白-α4的沉积,从而导致径向胶质神经末梢从基底膜上脱离。随后,这导致了大脑发育过程中神经胶质依赖性神经元迁移和体细胞移位的缺陷,从而表明EC衍生的ECM对神经发育很重要。

在培养的新生儿NPC中进行的基因表达研究强调了不同NPC命运期间代谢途径调节剂的差异基因表达(Karsten等,2003),暗示了祖细胞在增殖和细胞命运决定过程中的动态代谢需求。有趣的是,导致高血糖的妊娠代谢变化导致胚胎新皮层RGC分化潜能受损,并导致RGC支架缺陷(Rash等人,2018年),表明血管的能量供应对于适当的神经发育至关重要。神经祖细胞的那些变化是否受血管源性因子或差异运输的调节,这一可能性尚待探索。

缺氧的作用

由于缺乏脉管系统,早期的胚胎脑缺氧。这种低氧组织是携带增殖NPC的理想生境(Lee等,2001; Zhu等,2005; Lange等,2016)。Studer等人的体外研究。2000)确定了氧在中脑前体细胞培养物中的生理作用。低O 2浓度(约3%)有利于这些前体细胞的增殖,并最终加速了多巴胺能神经元的总产生。进一步研究,以了解底层的氧的作用的分子机制在体外体内结果表明,转录因子Hif1α充当了NPC 体内存活,生长和分化的正调控因子(Tomita等,2003; Milosevic等,2007)。Hif1α在神经细胞中的条件性敲除导致神经元通过细胞凋亡而大量丧失,而新皮层表现出脑积水(Tomita等,2003)。在类似的观点,兰格等。2016)最近证明了体内通过缓解缺氧,新皮层中的血管进入调节了从初始RGC(新皮层发育过程中的顶端NPC)向分化模式的转换。以更详细的方式,首次显示了脉管系统对干细胞的代谢调节。作者使用GPR124基因敲除的小鼠胚胎,其在中枢神经系统中表现出的血管网络明显减少,从而导致缺氧率更高,作者描述了稳定NPC中的Hif1α会导致糖酵解基因(如pfkfb3)的表达增加,同时伴随RGC的增加扩张。他们还表明Pfkfb3阻止了RGC分化,从而维持了祖细胞的增殖位(Lange等人,2016)。因此,祖先启动分化所需的代谢转换需要通过血管缓解缺氧。

对发育中的小鼠后脑的研究表明,NPC有丝分裂的峰值与血管生成发芽呈正相关。有趣的是,EC所表达的Neuropilin1(NRP1)被证明可以正向调节NPC的有丝分裂行为,因为EC特异性的NRP1缺失导致NPC的早熟细胞周期退出,而与组织的氧合水平无关(Tata等,2016)。)。这些结果表明,组织氧合和缺氧可能不是唯一的调节机制经由该容器的NPC调节并建议有源angiocrine信令也可能参与。图1B突出了中枢神经系统发育过程中从进入的脉管系统获得的已知线索。有趣的是,最近来自发育中的前脑在不同阶段的EC的RNA测序揭示了基因表达的动态变化,包括可能充当潜在血管分泌分子的基因以及参与代谢的基因(Hupe et al。,2017)。尽管这些代谢标志物可能是EC代谢本身所必需的,但仍很容易推测,并且有待证明,CNS ECs在发育过程中的代谢调节会导致EC衍生的血管分泌因子可能影响NPC功能。

成人神经源性壁Ni

多年来,人们一直认为新神经元的产生是胚胎和出生后早期中枢神经系统组织的特权。然而,新的神经元和神经胶质的诞生也发生在成年哺乳动物的大脑中,并在整个生命中持续下去,这一过程被称为“成人神经发生”(Ming and Song,2011)。已在成年脑内的不同位置鉴定出产生神经元和神经胶质的NSC,例如海马齿状回(DG)的颗粒下亚区(SGZ),侧脑室SVZ和与第三脑室壁相邻的下丘脑( Kokoeva等人,2007; Lin和Iacovitti,2015)。与中枢神经系统发育的胚胎阶段相似,最近的研究也强调了成年大鼠脑和脊髓中软脑膜的想法,认为其潜在潜伏位点具有具有神经源性潜能的干细胞/前体细胞,并且可以在脊髓过程中功能性参与实质反应(Bifari等,2009; Decimo等,2011; Nakagomi等,2012)。

SVZ代表成人大脑中最大的生发区。SVZ的NSC(B型细胞)是处于静止状态的星形胶质细胞(Codega等,2014; Mich等,2014)。激活后,它们会产生转运扩增前体(C型细胞或TAC),进而产生神经母细胞(A型细胞)或神经胶质细胞(图2A; Kriegstein和Alvarez-Buylla,2009; Ming和Song,2011)。 。成神经细胞沿着鼻尖迁移流(RMS)迁移到嗅球(OB),在那里它们分化为成熟的中间神经元(Kriegstein和Alvarez-Buylla,2009; Ming和Song,2011年)。与SVZ相比,SGZ的NSC产生神经母细胞,这些神经母细胞短距离迁移到DG中并成熟成齿状颗粒神经元(Zhao等,2008; Bonaguidi等,2012)。

(A)成年小鼠大脑中脑室下区域(SVZ)神经源壁iche的示意图。神经干细胞(NSC)产生转运放大细胞,继而引起迁移的神经母细胞。NSC位于室管膜细胞层下方。NSC的基础过程与血管的EC接触。请注意,周细胞以及NSC和星形胶质细胞的末端紧密包裹了血管。NSC的过程,周细胞和利基星形胶质细胞形成神经血管单位(NVU),对于控制利基处的特定EC血脑屏障(BBB)特性很重要。(B)在成年的CNS中促进NSC及其子代静止,存活,增殖和分化的EC来源提示。

在成年神经源性壁N中,神经干细胞位于一个特殊的微环境中,在那里它们会与影响其行为的各种细胞相互作用。成年SVZ小生境的细胞成分包括NSC及其子代,内衬脑脊液(CSF)的脑室的室管膜细胞,神经元,非干细胞星形胶质细胞,小胶质细胞以及脉管系统的成分(EC和周细胞;图) 2A; Ihrie和Alvarez-Buylla,2011; Bjornsson等,2015)。与SVZ中的B细胞不同,SGZ中的NSC位置不同,并且更深地嵌入脑实质中,远离心室壁,周围是神经元,神经胶质和血管(Fuentealba et al。,2012)。

SVZ的NSC位于室管膜细胞层下方。它们表现出极化的形态,使人联想到其胚胎的前身ors状胶质细胞。更具体地说,它们扩展了一个短的顶端过程,该过程通过室间隔膜细胞层投射以直接进入CSF(Mirzadeh等,2008)。此外,它们还延长了一个较长的基础过程,通过特殊的脚部接触血管(图2A; Mirzadeh等人,2008; Fuentealba等人,2012)。)。与在SVZ NSC中观察到的根尖基底形态相似,SGZ的星形星形胶质细胞(用作NSC)高度极化,其近侧区域面向孔,包括与血管的接触,初级纤毛和与之接触的侧突其他星形星形胶质细胞(Fuentealba等,2012)。远侧区域是高度分支的,并与神经元过程和其他神经胶质细胞接触(Fuentealba等,2012)。因此,SVZ和SGZ中的NSC都准备好接收来自血管腔的信号。

成人神经发生的血管调节

在成年海马中,神经元新生的血管周围生态位首先被描述为分裂的EC与新生神经元的解剖学联系(Palmer等,2000)。自那时以来,大量研究集中于脉管系统在干细胞壁ches中的重要作用,并确定了涉及干细胞稳态的EC分泌以及膜结合信号分子的令人印象深刻的库(图2B)。重要研究的主要发现将在下面的段落中描述。

神经源性壁ches的专门血管

与非神经源性大脑区域相比,成人SGZ和SVZ中的脉管系统都具有独特的高度组织性(Shen等人,2008; Tavazoie等人,2008; Sun等人,2015)。更具体地说,这两个神经源性壁are的特征是密集的平面,相互连接且相对不曲折(笔直)的血管网络,为NSC及其后代提供了底物(Shen等人,2008; Tavazoie等人2008; Wang等,2008)。 Culver等,2013; Sun等,2015)。但是,即使SVZ和SGZ的血管床均支持成人神经发生,SVZ的脉管系统似乎也具有独特的特征(Tavazoie等人,2008)。与大脑的其他区域相反,在大脑的其他区域,通过EC紧密连接和粘附连接,周细胞覆盖和星形胶质细胞的尾端来严格维持血脑屏障(BBB)的完整性,有人提出在大脑中存在一种具有特殊功能的改良BBB。 SVZ(Tavazoie et al。,2008)。有趣的是,小的示踪分子研究表明,SVZ具有部分可渗透的血脑屏障,可让血液进入血液中(Tavazoie等,2008)。)。这些源自血液的信号影响NSC的行为并调节命运规范,分化,静止和增殖。此外,NSC及其直接后代(C细胞)分别在缺乏周细胞和星形胶质细胞完全覆盖的专门部位,直接与EC与其基础过程和细胞体接触,这表明直接进行NSC-EC交流也可能很重要用于调节NSC行为(Tavazoie等,2008)。

血管对成人NSC的影响

内皮细胞分泌因子

大量研究表明,EC如何通过分泌因子调节NSC行为。BDNF是第一个经EC分泌的分子,被证明能增加成年鸣禽大脑中的神经发生(新生成的功能神经元的数量)(Louissaint等,2002)。在体外,据报道,EC来源的BDNF支持SVZ外植体中神经突的生长,新生神经母细胞的存活和迁移(Leventhal等人,1999)。从那时起,该领域从使用NSC / EC跨孔培养的体外研究中获得了进一步的见识,其中EC释放的可溶性因子刺激自我更新,抑制分化并增强NSC的神经发生(Shen等人,2004年)。内皮细胞和室管膜细胞释放的色素上皮衍生因子(PEDF)是第一个可溶的因子,可通过增强Notch依赖性转录选择性增加SVZ中B细胞的自我更新,并随后增强神经发生(Ramírez-Castillejo等等人,2006;Andreu-Agulló等人,2009)。同样,毛细血管内皮细胞和脉络丛神经表达的EGF家族成员βcellulin(BTC)通过分别通过位于NSC和神经母细胞上的EGF和ErbB4受体的作用,诱导NSC和神经母细胞的扩增(Gómez-Gaviro等,2012)。血管丛和室管膜细胞表达的趋化因子基质衍生因子(SDF1;也称为CXCL12)也显示出通过结合CXCR4受体对NSC谱系的不同阶段具有不同的作用将活性NSC(aNSC)和TAC归巢到血管中(Kokovay et al。,2010)。最近的一项研究进一步表明,SDF1的表达在毛细管中受到特定限制,并且aNSC及其后代优先与它们相关。相比之下,qNSC在SDF1阴性血管附近最为普遍(Zhu等,2019)。一种在体外研究已经确定胎盘生长因子2(PlGF-2)是VEGF受体1(VEGFR1)的配体,是EC衍生的因子,可以促进SVZ干细胞及其后代的增殖(Crouch et al。,2015)。最近的研究也表明,可扩散信号会强制静止并促进干细胞身份。更具体地说,EC分泌神经营养蛋白3(NT-3)以支持表达原肌球蛋白相关激酶C(TrkC)受体的NSC的静止(Delgado等,2014)。此外,已证明两种鞘氨醇-1-磷酸(S1P)和前列腺素-D 2(两种EC衍生的GPCR配体)可积极维持NSC的静止(Codega等人,2014年)。总而言之,这些研究表明,EC衍生的因子可以同时强制静止并促进增殖,这取决于NSC的激活状态,因此暗示了沿谱系的双重调控。

细胞间相互作用

如上所述,NSCs通过其长期的基础过程和专门的末端与血管直接接触。一些研究调查了EC和NSC之间这些直接细胞间相互作用的重要性,并显示了它们如何强制静止并促进干细胞特性。更具体地说,ECs在其膜中分别通过激活Eph和Notch信号表达ephrinB2和Jagged1,它们促进了通过其基础过程与之接触的NSC中的静止(Ottone等,2014)。)。除这项研究外,整合素介导的信号传导还显示出在其利基体内结合SVZ干细胞的功能。更具体地,成年NSC表达层粘连蛋白受体α6β1整联蛋白,从而使这些细胞能够结合血管周围富含层粘连蛋白的环境。该α6β1整联蛋白信号传导对于NSC与EC结合非常重要,因为体内阻断α6β1 导致SVZ祖细胞从脉管系统迁移出去(Shen等,2008)。

循环效应器

血液循环物质可以直接通过 SVZ 的部分渗透性BBB(基于Tavazoie等人,2008的结果)或通过脉络丛/ CSF 间接访问SVZ神经源性利基并且已显示会影响神经源性利基。例如,催乳素是一种在怀孕期间被上调并由血流携带的激素,在增强怀孕期间SVZ的神经发生中起关键作用(Shingo等人,2003年)。此外,循环中的促红细胞生成素可以作为一个完整的分子穿过血脑屏障,并在胚胎发育过程中作为干细胞祖细胞的增强刺激物,以及大脑局部缺血的旁分泌神经保护介质(Ruscher等,2002)。)。使用异时共生模型,即连接年轻和年老小鼠的循环,显示了刺激SVZ神经发生的血液传播循环因子的令人兴奋的演示。在这项研究中,GDF11被确定为增加老年小鼠神经发生所必需的因子(Katsimpardi等,2014)。循环因素也可能对神经发生产生负面影响。例如,皮质酮和趋化因子CCL11均显示抑制神经发生(Villeda等,2011)。

如上所述,在动态平衡过程中,脉管系统在协调成人CNS中的NSC命运方面起着重要作用。但是,其指导作用超出了生理条件,在病理性损伤(例如脑梗死)期间和之后似乎至关重要。更具体地,许多研究表明,ECs促进中风后皮层中神经干/祖细胞的存活,增殖和神经元分化(Nakagomi等,2009; Nakano-Doi等,2010)。中风后,受伤区域的血管上调SDF1和血管生成素1(Ang1)的表达,从而将成神经细胞吸引到梗塞周围区域,并促进神经发生和功能恢复(Ohab等人,2006年))。同样,在缺血性纹状体中,ECs合成BDNF,从而促进神经母细胞向损伤部位的募集和脉管介导的迁移(Grade等,2013)。这些研究突显了血管作为将成神经细胞迁移到梗塞区域的支架的额外作用(Kojima等,2010; Grade等,2013)。但是,该主题不在我们的讨论范围之内,因此请读者参考Saghatelyan(2009)。丁等。2013); 泽田等。2014); 阮等人。2015)和Horgusluoglu等人。2017)了解更多详细信息。

成人NSC的代谢和能量感应机制

成年NSC构成了一个非常活跃的种群,最近的NSC转录组分析显示,沿神经源性谱系的过渡与它们的代谢特征发生了变化(Llorens-Bobadilla等,2015; Shin等,2015)。更具体地说,在处于静止状态并因此处于低代谢状态时,神经干细胞优先利用糖酵解和脂肪酸氧化(FAO;脂解)来满足其能量需求(Ito和Suda,2014年 ; Llorens-Bobadilla等人,2015年 ; Shin等人。 ,2015 ; Stoll等人,2015 ; Xie等人,2016 ; Knobloch和Jessberger,2017 ; Knobloch等人,2017)。相反,在高度增殖的aNSC中,其分化的子代线粒体氧化磷酸化(OXPHOS)以及从头脂肪形成接管细胞分裂(Knobloch等人,2013; Ito和Suda,2014; Llorens-Bobadilla等人,2015)。 ; Shin等,2015)。同样,胚胎脑的NSC表现出其扩展和/或维持所必需的高糖酵解活性,而其分化后会降低(Lange等人,2016)。这些研究表明,代谢输入和营养物质的利用是神经发生的关键调节剂,并有助于NSC的决策。因此,脉管系统成为NSC代谢的关键调节器,因为它为大脑提供了营养和氧气,并确保满足NSC的能量需求。

氧气供应和HIF信号

与它们的胚胎前代相似,成年的神经干细胞生活在低氧水平(<1%–6%)的生态位中,因此强调了其在干细胞功能中的重要性(Ochocki和Simon,2013年)。大量的体外研究已经研究了氧气在NSC自我更新和命运规范中的作用,并证明了低氧气含量对NSC有利于促进NSC的增殖和存活。NSC通过关闭OXPHOS以支持糖酵解代谢来应对缺氧。这是由低氧诱导的转录因子(HIFs)精心策划的,该因子在低氧气利用率下稳定并被激活(<9%; Majmundar等,2010)。HIF1α信号对于正常的NSC功能至关重要。例如,HIF1α的特异性缺失在成年小鼠引线的神经干细胞在成人SVZ NSCs的显著减少,从而突出在两个调节NSCs的自我更新,增殖和分化的氧和感测机制的重要性在体外在体内(Li et al。,2014)。有趣的是,NSC编码的Hif1α对维持成年SVZ的血管完整性以及稳定脑损伤后的脉管系统也很重要(Roitbak等,2008; Li等,2014)。)。此外,缺氧与NSC中的Wnt /β-catenin信号传导有关,这表明氧的可用性通过Wnt /β-catenin信号的Hif1α调节在NSC调控中具有直接作用(Mazumdar等,2010)。尽管有这些最初的发现,但成人组织中Hif1α作用的潜在分子机制仍然难以捉摸。

除了氧气之外,营养素还包括成人神经发生的重要调节剂。如前所述,营养素,生长因子和循环激素可以通过脉管系统通过扩散或通过转运介导的系统来输送,并影响NSC的行为。这意味着存在一些分子机制,可对营养物质的利用做出响应,并协调NSC对能量变化的响应(例如,热量限制,运动,病理,衰老等)。在这些机制中,sirtuins,CREB,AMPK和胰岛素/ IGF途径是最典型的机制。在本文中,我们将重点关注后者,因为它包括一个通过激活大量下游信号级联反应来中枢神经系统的发展和功能的中央调节器。有关其他途径的更多详细信息,2010 ; Rafalski和Brunet,2011年Houtkooper等,2012Ochocki和Simon,2013年伊藤和须田,2014年Fusco et al。,2016)。

胰岛素/ IGF信号通路

One of the brain’s mechanisms to respond to glucose and energy excess is the insulin/IGF-1 signaling pathway. Systemic IGF-1 and insulin can both cross the BBB and bind to their tyrosine kinase receptors leading to their auto-phosphorylation (Hubbard, 2013; Kavran et al., 2014). Recently, a study focusing on neurovascular coupling has demonstrated that neuronal activity can induce changes in BBB permeability thus promoting the release and entrance of IGF-1 into the CNS, and consequently leading to an increase in its availability (Nishijima et al., 2010). The receptors for insulin/IGF-1 are highly expressed in NSCs in neurogenic niches, and several studies have implicated insulin/IGF-1 signaling in NSC maintenance, proliferation and differentiation (Rafalski and Brunet, 2011). More specifically, in vivo infusion of IGF-1 induces NSC proliferation and subsequent neurogenesis in the adult rat hippocampus (Aberg et al., 2000). Similarly, IGF-1 has a direct proliferative effect in adult hippocampal NSCs in vitro (Aberg et al., 2003). Even though the role of insulin in adult NSCs in vivo has not been elucidated, in vitro studies have demonstrated that insulin can induce neurogenesis (Han et al., 2008; Yu et al., 2008; Rhee et al., 2013). The main mediator of insulin/IGF-1 signaling in NSCs is the PI3K/Akt signal transduction pathway and many downstream signaling components have been shown to be involved in NSC biology, including FoxO transcription factors and mTOR (Rafalski and Brunet, 2011).

FoxO Transcription Factors in NSCs

FoxO transcription factors have been shown to be essential for both embryonic and adult stem cells (Rafalski and Brunet, 2011; Rafalski et al., 2012). Gene expression analysis in adult NSCs shows that FoxO transcription factors, and in particular FoxO3, induce a specific program of genes that preserves quiescence, and controls glucose and oxygen metabolism thus highlighting their role in NSC homeostasis (Renault et al., 2009). Accordingly, in the absence of FoxOs NSCs hyperproliferate, leading to the exhaustion of the quiescent stem cell pool (Renault et al., 2009). FoxOs are negatively regulated by the insulin/IGF-1 pathway through the PI3K/Akt branch, thus suggesting a direct link between nutrient availability and stem cell metabolism (Rafalski and Brunet, 2011).

mTOR Signaling in NSCs

The mTOR is a central regulator of cell homeostasis and protein synthesis. In neurogenic niches, several studies have highlighted its role in many aspects of neurogenesis as it is involved in fine-tuning the balance between stem cell self-renewal and differentiation (Magri and Galli, 2013; LiCausi and Hartman, 2018). For example, recent in vivo studies in adult mice have demonstrated that mTOR activation promotes NSC proliferation and subsequent neuronal differentiation, at the expense of quiescence and self-renewal (Paliouras et al., 2012). In contrast, sustained mTOR activation in embryonic NSCs leads to premature differentiation and apoptosis at the expense of the stem cell pool (Magri et al., 2011; Kassai et al., 2014). mTOR can be activated in response to insulin/IGF, nutrients such as glucose and amino acids, as well as pro-inflammatory cytokines (e.g., TNFα, CD95; Magri and Galli, 2013; LiCausi and Hartman, 2018). In contrast, many cellular stresses such as hypoxia and low energy act to inactivate mTOR (Magri and Galli, 2013; LiCausi and Hartman, 2018).

Conclusions and Perspectives

In the past years, significant progress has been made to support the concept of a perivascular niche that regulates stem cells, and blood vessels have emerged as an integral component of both embryonic and adult neurogenic niches. In the developing brain, current knowledge on how blood vessels regulate NSCs is limited, in part due to the limitations of working with mouse embryos. Emerging new technical approaches, such as whole tissue imaging and single cell sequencing, will rapidly pave the path towards a better understanding of cell-cell interactions and molecular signaling pathways required for proper development of the CNS, and in particular towards the vascular control of NSC properties. Accruing to this, recent sequencing data obtained from embryonic mouse CNS tissue describes an interesting list of genes expressed by ECs during development, which could act as angiocrine factors and directly regulate NPC properties (Lange et al., 2016; Hupe et al., 2017). However, their influence on the NPCs still needs to be addressed.

Similarly, in the adult SVZ and SGZ, the close interaction of blood vessels and NSCs has a substantial impact on the behavior of the latter. An important number of studies have demonstrated that EC-derived factors, as well as direct NSC-EC interactions, can affect NSC self-renewal, proliferation, differentiation, and survival. It is now recognized that this NSC lineage progression from quiescence to activation is characterized by alterations in their metabolic status. However, whether and how signals derived from the vasculature, or how physiological remodeling of the vasculature, are directly “translated” into the metabolic switches that accompany the cellular states of NSCs needs to be further explored. In this respect, nutrients are necessary for neurogenesis, and NSCs have developed a repertoire of sensing mechanisms to respond to nutrient availability. As blood vessels comprise the main conduits for nutrients and oxygen, it would be of great interest to investigate whether NSCs can “talk” back to ECs to regulate nutrient availability for their own demands.

Author Contributions

All the authors listed contributed to the concept and design of the manuscript. AK and BS wrote the manuscript and prepared the figures. CRA wrote and critically revised the manuscript.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We thank all members of Ruiz de Almodóvar’s lab for helpful discussions.

Footnotes

Funding. We acknowledge financial support by Deutsche Forschungsgemeinschaft within the funding programme Open Access Publishing, by the Baden-Württemberg Ministry of Science, Research and the Arts and by Ruprecht-Karls-Universität Heidelberg. CRA’s research was funded by ERC grant (ERC-StG-311367), Schram Foundation, and the Deutsche Forschungsgemeinschaft (DFG)-SFB873; FOR2325 and SFB1366 (Project number 394046768-SFB 1366).

References

  • Aberg M. A., Aberg N. D., Hedbacker H., Oscarsson J., Eriksson P. S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci.20, 2896–2903. 10.1523/jneurosci.20-08-02896.2000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Aberg M. A., Aberg N. D., Palmer T. D., Alborn A. M., Carlsson-Skwirut C., Bang P., et al. . (2003). IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol. Cell. Neurosci.24, 23–40. 10.1016/s1044-7431(03)00082-4 [PubMed] [CrossRef] [Google Scholar]

  • Andreu-Agulló C., Morante-Redolat J. M., Delgado A. C., Farinas I. (2009). Vascular niche factor PEDF modulates notch-dependent stemness in the adult subependymal zone. Nat. Neurosci.12, 1514–1523. 10.1038/nn.2437 [PubMed] [CrossRef] [Google Scholar]

  • Bifari F., Berton V., Pino A., Kusalo M., Malpeli G., Di Chio M., et al. . (2015). Meninges harbor cells expressing neural precursor markers during development and adulthood. Front. Cell. Neurosci.9:383. 10.3389/fncel.2015.00383 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Bifari F., Decimo I., Chiamulera C., Bersan E., Malpeli G., Johansson J., et al. . (2009). Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J. Cell. Mol. Med.13, 3195–3208. 10.1111/j.1582-4934.2009.00706.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Bifari F., Decimo I., Pino A., Llorens-Bobadilla E., Zhao S., Lange C., et al. . (2017). Neurogenic radial glia-like cells in meninges migrate and differentiate into functionally integrated neurons in the neonatal cortex. Cell Stem Cell20, 360–373.e7. 10.1016/j.stem.2016.10.020 [PubMed] [CrossRef] [Google Scholar]

  • Bjornsson C. S., Apostolopoulou M., Tian Y., Temple S. (2015). It takes a village: constructing the neurogenic niche. Dev. Cell32, 435–446. 10.1016/j.devcel.2015.01.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Bonaguidi M. A., Song J., Ming G. L., Song H. (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr. Opin. Neurobiol.22, 754–761. 10.1016/j.conb.2012.03.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Breunig J. J., Haydar T. F., Rakic P. (2011). Neural stem cells: historical perspective and future prospects. Neuron70, 614–625. 10.1016/j.neuron.2011.05.005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Cantó C., Auwerx J. (2010). AMP-activated protein kinase and its downstream transcriptional pathways. Cell. Mol. Life Sci.67, 3407–3423. 10.1007/s00018-010-0454-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Codega P., Silva-Vargas V., Paul A., Maldonado-Soto A. R., Deleo A. M., Pastrana E., et al. . (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron82, 545–559. 10.1016/j.neuron.2014.02.039 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Crouch E. E., Liu C., Silva-Vargas V., Doetsch F. (2015). Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J. Neurosci.35, 4528–4539. 10.1523/JNEUROSCI.1188-14.2015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Culver J. C., Vadakkan T. J., Dickinson M. E. (2013). A specialized microvascular domain in the mouse neural stem cell niche. PLoS One8:e53546. 10.1371/journal.pone.0053546 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Decimo I., Bifari F., Rodriguez F. J., Malpeli G., Dolci S., Lavarini V., et al. . (2011). Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells29, 2062–2076. 10.1002/stem.766 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Delgado A. C., Ferron S. R., Vicente D., Porlan E., Perez-Villalba A., Trujillo C. M., et al. . (2014). Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron83, 572–585. 10.1016/j.neuron.2014.06.015 [PubMed] [CrossRef] [Google Scholar]

  • Ding D. C., Lin C. H., Shyu W. C., Lin S. Z. (2013). Neural stem cells and stroke. Cell Transplant.22, 619–630. 10.3727/096368912X655091 [PubMed] [CrossRef] [Google Scholar]

  • Engelhardt B., Liebner S. (2014). Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res.355, 687–699. 10.1007/s00441-014-1811-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Fuentealba L. C., Obernier K., Alvarez-Buylla A. (2012). Adult neural stem cells bridge their niche. Cell Stem Cell10, 698–708. 10.1016/j.stem.2012.05.012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Fusco S., Leone L., Barbati S. A., Samengo D., Piacentini R., Maulucci G., et al. . (2016). A CREB-Sirt1-Hes1 circuitry mediates neural stem cell response to glucose availability. Cell Rep.14, 1195–1205. 10.1016/j.celrep.2015.12.092 [PubMed] [CrossRef] [Google Scholar]

  • Gama Sosa M. A., De Gasperi R., Rocher A. B., Perez G. M., Simons K., Cruz D. E., et al. . (2007). Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact. Cell Res.17, 619–626. 10.1038/cr.2007.53 [PubMed] [CrossRef] [Google Scholar]

  • Gaughwin P. M., Caldwell M. A., Anderson J. M., Schwiening C. J., Fawcett J. W., Compston D. A., et al. . (2006). Astrocytes promote neurogenesis from oligodendrocyte precursor cells. Eur. J. Neurosci.23, 945–956. 10.1111/j.1460-9568.2006.04625.x [PubMed] [CrossRef] [Google Scholar]

  • Gómez-Gaviro M. V., Scott C. E., Sesay A. K., Matheu A., Booth S., Galichet C., et al. . (2012). Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc. Natl. Acad. Sci. U S A109, 1317–1322. 10.1073/pnas.1016199109 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Grade S., Weng Y. C., Snapyan M., Kriz J., Malva J. O., Saghatelyan A. (2013). Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One8:e55039. 10.1371/journal.pone.0055039 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Han J., Wang B., Xiao Z., Gao Y., Zhao Y., Zhang J., et al. . (2008). Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol. Cell. Neurosci.39, 118–124. 10.1016/j.mcn.2008.06.003 [PubMed] [CrossRef] [Google Scholar]

  • Hiruma T., Nakajima Y., Nakamura H. (2002). Development of pharyngeal arch arteries in early mouse embryo. J. Anat.201, 15–29. 10.1046/j.1469-7580.2002.00071.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Hogan K. A., Ambler C. A., Chapman D. L., Bautch V. L. (2004). The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development131, 1503–1513. 10.1242/dev.01039 [PubMed] [CrossRef] [Google Scholar]

  • Horgusluoglu E., Nudelman K., Nho K., Saykin A. J. (2017). Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am. J. Med. Genet. B Neuropsychiatr. Genet.174, 93–112. 10.1002/ajmg.b.32429 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Houtkooper R. H., Pirinen E., Auwerx J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol.13, 225–238. 10.1038/nrm3293 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Hubbard S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harb. Perspect. Biol.5:a008946. 10.1101/cshperspect.a008946 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Hupe M., Li M. X., Kneitz S., Davydova D., Yokota C., Kele J., et al. . (2017). Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci. Signal.10:eaag2476. 10.1126/scisignal.aag2476 [PubMed] [CrossRef] [Google Scholar]

  • Ihrie R. A., Alvarez-Buylla A. (2011). Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron70, 674–686. 10.1016/j.neuron.2011.05.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ito K., Suda T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol.15, 243–256. 10.1038/nrm3772 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ivanova N. B., Dimos J. T., Schaniel C., Hackney J. A., Moore K. A., Lemischka I. R. (2002). A stem cell molecular signature. Science298, 601–604. 10.1126/science.1073823 [PubMed] [CrossRef] [Google Scholar]

  • Javaherian A., Kriegstein A. (2009). A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb. Cortex19, i70–i77. 10.1093/cercor/bhp029 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Karsten S. L., Kudo L. C., Jackson R., Sabatti C., Kornblum H. I., Geschwind D. H. (2003). Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling and metabolic networks. Dev. Biol.261, 165–182. 10.1016/s0012-1606(03)00274-4 [PubMed] [CrossRef] [Google Scholar]

  • Kassai H., Sugaya Y., Noda S., Nakao K., Maeda T., Kano M., et al. . (2014). Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis and neurodegenerative diseases. Cell Rep.7, 1626–1639. 10.1016/j.celrep.2014.04.048 [PubMed] [CrossRef] [Google Scholar]

  • Katsimpardi L., Litterman N. K., Schein P. A., Miller C. M., Loffredo F. S., Wojtkiewicz G. R., et al. . (2014). Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science344, 630–634. 10.1126/science.1251141 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Kavran J. M., McCabe J. M., Byrne P. O., Connacher M. K., Wang Z., Ramek A., et al. . (2014). How IGF-1 activates its receptor. Elife3:e03772. 10.7554/eLife.03772 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Knobloch M., Braun S. M., Zurkirchen L., von Schoultz C., Zamboni N., Arauzo-Bravo M. J., et al. . (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature493, 226–230. 10.1038/nature11689 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Knobloch M., Jessberger S. (2017). Metabolism and neurogenesis. Curr. Opin. Neurobiol.42, 45–52. 10.1016/j.conb.2016.11.006 [PubMed] [CrossRef] [Google Scholar]

  • Knobloch M., Pilz G. A., Ghesquière B., Kovacs W. J., Wegleiter T., Moore D. L., et al. . (2017). A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep.20, 2144–2155. 10.1016/j.celrep.2017.08.029 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Kojima T., Hirota Y., Ema M., Takahashi S., Miyoshi I., Okano H., et al. . (2010). Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells28, 545–554. 10.1002/stem.306 [PubMed] [CrossRef] [Google Scholar]

  • Kokoeva M. V., Yin H., Flier J. S. (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J. Comp. Neurol.505, 209–220. 10.1002/cne.21492 [PubMed] [CrossRef] [Google Scholar]

  • Kokovay E., Goderie S., Wang Y., Lotz S., Lin G., Sun Y., et al. . (2010). Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell7, 163–173. 10.1016/j.stem.2010.05.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Kondo T., Raff M. (2000). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289, 1754–1757. 10.1126/science.289.5485.1754 [PubMed] [CrossRef] [Google Scholar]

  • Kriegstein A., Alvarez-Buylla A. (2009). The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci.32, 149–184. 10.1146/annurev.neuro.051508.135600 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Kumar M., Csaba Z., Peineau S., Srivastava R., Rasika S., Mani S., et al. . (2014). Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann. Clin. Transl. Neurol.1, 968–981. 10.1002/acn3.137 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Lange C., Turrero Garcia M., Decimo I., Bifari F., Eelen G., Quaegebeur A., et al. . (2016). Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J.35, 924–941. 10.15252/embj.201592372 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Lee Y. M., Jeong C. H., Koo S. Y., Son M. J., Song H. S., Bae S. K., et al. . (2001). Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn.220, 175–186. 10.1002/1097-0177(20010201)220:2<175::AID-DVDY1101>3.0.CO;2-F [PubMed] [CrossRef] [Google Scholar]

  • Leventhal C., Rafii S., Rafii D., Shahar A., Goldman S. A. (1999). Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci.13, 450–464. 10.1006/mcne.1999.0762 [PubMed] [CrossRef] [Google Scholar]

  • Li L., Candelario K. M., Thomas K., Wang R., Wright K., Messier A., et al. . (2014). Hypoxia inducible factor-1α (HIF-1α) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ. J. Neurosci.34, 16713–16719. 10.1523/JNEUROSCI.4590-13.2014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • LiCausi F., Hartman N. W. (2018). Role of mTOR complexes in neurogenesis. Int. J. Mol. Sci.19:E1544. 10.3390/ijms19051544 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Lin R., Iacovitti L. (2015). Classic and novel stem cell niches in brain homeostasis and repair. Brain Res.1628, 327–342. 10.1016/j.brainres.2015.04.029 [PubMed] [CrossRef] [Google Scholar]

  • Llorens-Bobadilla E., Zhao S., Baser A., Saiz-Castro G., Zwadlo K., Martin-Villalba A. (2015). Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell17, 329–340. 10.1016/j.stem.2015.07.002 [PubMed] [CrossRef] [Google Scholar]

  • Louissaint A., Jr., Rao S., Leventhal C., Goldman S. A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron34, 945–960. 10.1016/s0896-6273(02)00722-5 [PubMed] [CrossRef] [Google Scholar]

  • Lowry N., Goderie S. K., Adamo M., Lederman P., Charniga C., Gill J., et al. . (2008). Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Exp. Neurol.209, 510–522. 10.1016/j.expneurol.2007.09.031 [PubMed] [CrossRef] [Google Scholar]

  • Magri L., Cambiaghi M., Cominelli M., Alfaro-Cervello C., Cursi M., Pala M., et al. . (2011). Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell9, 447–462. 10.1016/j.stem.2011.09.008 [PubMed] [CrossRef] [Google Scholar]

  • Magri L., Galli R. (2013). mTOR signaling in neural stem cells: from basic biology to disease. Cell. Mol. Life Sci.70, 2887–2898. 10.1007/s00018-012-1196-x [PubMed] [CrossRef] [Google Scholar]

  • Majmundar A. J., Wong W. J., Simon M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell40, 294–309. 10.1016/j.molcel.2010.09.022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Maki T., Maeda M., Uemura M., Lo E. K., Terasaki Y., Liang A. C., et al. . (2015). Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neurosci. Lett.597, 164–169. 10.1016/j.neulet.2015.04.047 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Martínez-Cerdeño V., Noctor S. C., Kriegstein A. R. (2006). The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb. Cortex16, i152–i161. 10.1093/cercor/bhk017 [PubMed] [CrossRef] [Google Scholar]

  • Mazumdar J., O’Brien W. T., Johnson R. S., LaManna J. C., Chavez J. C., Klein P. S., et al. . (2010). O2 regulates stem cells through Wnt/β-catenin signalling. Nat. Cell Biol.12, 1007–1013. 10.1038/ncb2102 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Mich J. K., Signer R. A., Nakada D., Pineda A., Burgess R. J., Vue T. Y., et al. . (2014). Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. Elife3:e02669. 10.7554/elife.02669 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Milosevic J., Maisel M., Wegner F., Leuchtenberger J., Wenger R. H., Gerlach M., et al. . (2007). Lack of hypoxia-inducible factor-1 α impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J. Neurosci.27, 412–421. 10.1523/JNEUROSCI.2482-06.2007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ming G. L., Song H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron70, 687–702. 10.1016/j.neuron.2011.05.001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Mirzadeh Z., Merkle F. T., Soriano-Navarro M., Garcia-Verdugo J. M., Alvarez-Buylla A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell3, 265–278. 10.1016/j.stem.2008.07.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Nadarajah B., Brunstrom J. E., Grutzendler J., Wong R. O., Pearlman A. L. (2001). Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci.4, 143–150. 10.1038/83967 [PubMed] [CrossRef] [Google Scholar]

  • Nakagomi T., Molnar Z., Taguchi A., Nakano-Doi A., Lu S., Kasahara Y., et al. . (2012). Leptomeningeal-derived doublecortin-expressing cells in poststroke brain. Stem Cells Dev.21, 2350–2354. 10.1089/scd.2011.0657 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Nakagomi N., Nakagomi T., Kubo S., Nakano-Doi A., Saino O., Takata M., et al. . (2009). Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells27, 2185–2195. 10.1002/stem.161 [PubMed] [CrossRef] [Google Scholar]

  • Nakano-Doi A., Nakagomi T., Fujikawa M., Nakagomi N., Kubo S., Lu S., et al. . (2010). Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells28, 1292–1302. 10.1002/stem.454 [PubMed] [CrossRef] [Google Scholar]

  • Ninomiya S., Esumi S., Ohta K., Fukuda T., Ito T., Imayoshi I., et al. . (2013). Amygdala kindling induces nestin expression in the leptomeninges of the neocortex. Neurosci. Res.75, 121–129. 10.1016/j.neures.2012.12.006 [PubMed] [CrossRef] [Google Scholar]

  • Nishijima T., Piriz J., Duflot S., Fernandez A. M., Gaitan G., Gomez-Pinedo U., et al. . (2010). Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron67, 834–846. 10.1016/j.neuron.2010.08.007 [PubMed] [CrossRef] [Google Scholar]

  • Ochocki J. D., Simon M. C. (2013). Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol.203, 23–33. 10.1083/jcb.201303110 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ohab J. J., Fleming S., Blesch A., Carmichael S. T. (2006). A neurovascular niche for neurogenesis after stroke. J. Neurosci.26, 13007–13016. 10.1523/JNEUROSCI.4323-06.2006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ottone C., Krusche B., Whitby A., Clements M., Quadrato G., Pitulescu M. E., et al. . (2014). Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol.16, 1045–1056. 10.1038/ncb3045 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Paliouras G. N., Hamilton L. K., Aumont A., Joppé S. E., Barnabé-Heider F., Fernandes K. J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J. Neurosci.32, 15012–15026. 10.1523/JNEUROSCI.2248-12.2012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Palmer T. D., Willhoite A. R., Gage F. H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425, 479–494. 10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3 [PubMed] [CrossRef] [Google Scholar]

  • Paridaen J. T., Huttner W. B. (2014). Neurogenesis during development of the vertebrate central nervous system. EMBO Rep.15, 351–364. 10.1002/embr.201438447 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Rafalski V. A., Brunet A. (2011). Energy metabolism in adult neural stem cell fate. Prog. Neurobiol.93, 182–203. 10.1016/j.pneurobio.2010.10.007 [PubMed] [CrossRef] [Google Scholar]

  • Rafalski V. A., Mancini E., Brunet A. (2012). Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci.125, 5597–5608. 10.1242/jcs.114827 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Rafii S., Butler J. M., Ding B. S. (2016). Angiocrine functions of organ-specific endothelial cells. Nature529, 316–325. 10.1038/nature17040 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Rakic P. (2009). Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci.10, 724–735. 10.1038/nrn2719 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ramírez-Castillejo C., Sánchez-Sánchez F., Andreu-Agulló C., Ferrón S. R., Aroca-Aguilar J. D., Sánchez P., et al. . (2006). Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci.9, 331–339. 10.1038/nn1657 [PubMed] [CrossRef] [Google Scholar]

  • Rash B. G., Micali N., Huttner A. J., Morozov Y. M., Horvath T. L., Rakic P. (2018). Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proc. Natl. Acad. Sci. U S A115, 10142–10147. 10.1073/pnas.1808066115 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Renault V. M., Rafalski V. A., Morgan A. A., Salih D. A., Brett J. O., Webb A. E., et al. . (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell5, 527–539. 10.1016/j.stem.2009.09.014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Rhee Y. H., Choi M., Lee H. S., Park C. H., Kim S. M., Yi S. H., et al. . (2013). Insulin concentration is critical in culturing human neural stem cells and neurons. Cell Death Dis.4:e766. 10.1038/cddis.2013.295 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Roitbak T., Li L., Cunningham L. A. (2008). Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1α-regulated VEGF signaling. J. Cereb. Blood Flow Metab.28, 1530–1542. 10.1038/jcbfm.2008.38 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Rosa A. I., Grade S., Santos S. D., Bernardino L., Chen T. C., Relvas J., et al. . (2016). Heterocellular contacts with mouse brain endothelial cells via laminin and α6β1 integrin sustain subventricular zone (SVZ) stem/progenitor cells properties. Front. Cell. Neurosci.10:284. 10.3389/fncel.2016.00284 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ruan L., Wang B., ZhuGe Q., Jin K. (2015). Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res.1623, 166–173. 10.1016/j.brainres.2015.02.042 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Ruscher K., Freyer D., Karsch M., Isaev N., Megow D., Sawitzki B., et al. . (2002). Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J. Neurosci.22, 10291–10301. 10.1523/jneurosci.22-23-10291.2002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Saghatelyan A. (2009). Role of blood vessels in the neuronal migration. Semin. Cell Dev. Biol.20, 744–750. 10.1016/j.semcdb.2009.04.006 [PubMed] [CrossRef] [Google Scholar]

  • Sawada M., Matsumoto M., Sawamoto K. (2014). Vascular regulation of adult neurogenesis under physiological and pathological conditions. Front. Neurosci.8:53. 10.3389/fnins.2014.00053 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Segarra M., Aburto M. R., Cop F., Llaó-Cid C., Härtl R., Damm M., et al. . (2018). Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science361:eaao2861. 10.1126/science.aao2861 [PubMed] [CrossRef] [Google Scholar]

  • Seo J. H., Maki T., Maeda M., Miyamoto N., Liang A. C., Hayakawa K., et al. . (2014). Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. PLoS One9:e103174. 10.1371/journal.pone.0103174 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Shen Q., Goderie S. K., Jin L., Karanth N., Sun Y., Abramova N., et al. . (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304, 1338–1340. 10.1126/science.1095505 [PubMed] [CrossRef] [Google Scholar]

  • Shen Q., Wang Y., Kokovay E., Lin G., Chuang S. M., Goderie S. K., et al. . (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell3, 289–300. 10.1016/j.stem.2008.07.026 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Shin J., Berg D. A., Zhu Y., Shin J. Y., Song J., Bonaguidi M. A., et al. . (2015). Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell17, 360–372. 10.1016/j.stem.2015.07.013 [PubMed] [CrossRef] [Google Scholar]

  • Shingo T., Gregg C., Enwere E., Fujikawa H., Hassam R., Geary C., et al. . (2003). Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science299, 117–120. 10.1126/science.1076647 [PubMed] [CrossRef] [Google Scholar]

  • Stoll E. A., Makin R., Sweet I. R., Trevelyan A. J., Miwa S., Horner P. J., et al. . (2015). Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells33, 2306–2319. 10.1002/stem.2042 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Studer L., Csete M., Lee S. H., Kabbani N., Walikonis J., Wold B., et al. . (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci.20, 7377–7383. 10.1523/jneurosci.20-19-07377.2000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Sun G. J., Zhou Y., Stadel R. P., Moss J., Yong J. H., Ito S., et al. . (2015). Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc. Natl. Acad. Sci. U S A112, 9484–9489. 10.1073/pnas.1508545112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Tata M., Wall I., Joyce A., Vieira J. M., Kessaris N., Ruhrberg C. (2016). Regulation of embryonic neurogenesis by germinal zone vasculature. Proc. Natl. Acad. Sci. U S A113, 13414–13419. 10.1073/pnas.1613113113 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Tavazoie M., Van der Veken L., Silva-Vargas V., Louissaint M., Colonna L., Zaidi B., et al. . (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell3, 279–288. 10.1016/j.stem.2008.07.025 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Tomita S., Ueno M., Sakamoto M., Kitahama Y., Ueki M., Maekawa N., et al. . (2003). Defective brain development in mice lacking the Hif-1α gene in neural cells. Mol. Cell. Biol.23, 6739–6749. 10.1128/mcb.23.19.6739-6749.2003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Tsai H. H., Niu J., Munji R., Davalos D., Chang J., Zhang H., et al. . (2016). Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science351, 379–384. 10.1126/science.aad3839 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Vasudevan A., Long J. E., Crandall J. E., Rubenstein J. L., Bhide P. G. (2008). Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci.11, 429–439. 10.1038/nn2074 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Villeda S. A., Luo J., Mosher K. I., Zou B., Britschgi M., Bieri G., et al. . (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature477, 90–94. 10.1038/nature10357 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Vissapragada R., Contreras M. A., da Silva C. G., Kumar V. A., Ochoa A., Vasudevan A., et al. . (2014). Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit. Brain Res.1565, 8–17. 10.1016/j.brainres.2014.03.018 [PubMed] [CrossRef] [Google Scholar]

  • Xie Z., Jones A., Deeney J. T., Hur S. K., Bankaitis V. A. (2016). Inborn errors of long-chain fatty acid β-oxidation link neural stem cell self-renewal to autism. Cell Rep.14, 991–999. 10.1016/j.celrep.2016.01.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Yu S. W., Baek S. H., Brennan R. T., Bradley C. J., Park S. K., Lee Y. S., et al. . (2008). Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells26, 2602–2610. 10.1634/stemcells.2008-0153 [PubMed] [CrossRef] [Google Scholar]

  • Zhao C., Deng W., Gage F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell132, 645–660. 10.1016/j.cell.2008.01.033 [PubMed] [CrossRef] [Google Scholar]

  • Zhu C., Mahesula S., Temple S., Kokovay E. (2019). Heterogeneous expression of SDF1 retains actively proliferating neural progenitors in the capillary compartment of the niche. Stem Cell Rep.12, 6–13. 10.1016/j.stemcr.2018.11.022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  • Zhu L. L., Wu L. Y., Yew D. T., Fan M. (2005). Effects of hypoxia on the proliferation and differentiation of NSCs. Mol. Neurobiol.31, 231–242. 10.1385/mn:31:1-3:231 [PubMed] [CrossRef] [Google Scholar]

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
封面重磅:4天将皮肤细胞变成专杀癌细胞的「干细胞杀手」丨奇点猛科技
盘点| 治疗脊髓损伤的干细胞疗法都有哪几类?
用于拯救脊髓损伤者的细胞疗法:曙光初现
神经干细胞移植 “逆转” 神经损伤 - MedChemExpress
新综述| 一文读懂间充质干细胞治疗神经系统疾病
人类还需要多久才可以修复神经?
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服