打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
复数的起源与应用

复数的起源   

16世纪意大利米兰学者卡当(Jerome Cardan15011576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(15961650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。 

数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(16461716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(17071783)说;“一切形如,√-1,√-2的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(17171783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是a+b*i的形式(ab都是实数)(说明:现行教科书中没有使用记号=-i,而使用=-1)。法国数学家棣莫佛(16671754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(17451818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。    

德国数学家阿甘得(17771855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”。高斯在1831年,用实数组(ab)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。    经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。   随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。

 

复数的应用 

系统分析 

在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。    

无论系统极点和零点在左半平面还是右半平面,根轨迹法都很重要。如果系统极点位於右半平面,则因果系统不稳定;都位于左半平面,则因果系统稳定;位於虚轴上,则系统为临界稳定的。如果系统的全部零点都位於右半平面,则这是个最小相位系统。如果系统的极点和零点关於虚轴对称,则这是全通系统。 

信号分析 

信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。    

利用傅立叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示:   其中ω对应角频率,复数z 包含了幅度和相位的信息。  

电路分析中,引入电容、电感与频率有关的虚部可以方便的将电压、电流的关系用简单的线性方程表示并求解。(有时用字母j 作为虚数单位,以免与电流符号i 混淆。) 

反常积分 

在应用层面,复分析常用以计算某些实值的反常函数,藉由复值函数得出。方法有多种,见围道积分方法。

量子力学 

量子力学中复数是十分重要的,因其理论是建基於复数域上无限维的希尔伯特空间。 

相对论

如将时间变数视为虚数的话便可简化一些狭义和广义相对论中的时空度量 (Metric) 方程。

应用数学  

实际应用中,求解给定

差分方程模型的系统,通常首先找出线性差分方程对应的特征方程的所有复特征根r ,再将系统以形为f(t) = e的基函数的线性组合表示。 

流体力学   

复函数於流体力学中可描述二维势流 (2D Potential Flow) 

碎形   

一些碎形如曼德勃罗集合和茹利亚集 (Julia set) 是建基於复平面上的点的。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
如何打破实数的框框,引入新的虚数
复数的萌芽、形成与发展
数学界的奇异怪数,复数指的是什么,它又能为数学做出什么贡献
复数的本质是什么?
复数的产生
世界上第一个提出“复数”概念的人是谁?
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服