打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
心脏磁共振组织追踪技术评估扩张型心肌病左室应变及其诊断价值

非缺血性扩张型心肌病(non-ischemic dilated cardiomyopathy,NIDCM)是没有异常负荷或者显著冠状动脉病变的情况下以收缩功能障碍为特征、伴左心室或者双心室扩张的心肌疾病[1]。NIDCM在发达国家中心血管疾病发病率和死亡率占有较大比例[2]。心脏磁共振(cardiovascular magnetic resonance,CMR)延迟增强显示心肌纤维化被认为是心脏不良事件强有力的预测因子[3],有研究显示,心肌纤维化可能是可逆的,已成为临床治疗的潜在靶点[4]。但对于CMR增强检查禁忌的患者,心肌纤维化无法检测,使得对该病的诊断、预防、治疗及预后的评估变得困难。心脏磁共振组织追踪技术(cardiovascular magnetic resonance feature tracking technology,CMR-FT)是基于心脏电影序列来较为准确地定量评估心肌整体及节段应变,其中3D峰值应变参数亦被认为是准确评估心肌应变的重要参数之一且是严重NIDCM患者左室反向重构的预测因子[5],可在很多疾病的射血分数下降之前早期地评估心肌损伤。本研究探讨使用CMR-FT技术对NIDCM患者的心功能、心肌应变进行定量分析,评估左心室应变对NIDCM的诊断价值以及该技术的可行性,以指导临床对NIDCM的早期治疗,改善患者的生存质量。

1 材料与方法
1.1 一般资料

回顾性研究2014年12月至2020年11月在我院确诊为NIDCM的33例患者,男23例,女10例,年龄18~81 (44.18±18.82)岁;对其行3.0 T心脏磁共振平扫及晚期钆增强(late gadolinium enhancement,LGE)扫描,使用17节段心肌分段法(如图1A~C)将每个心脏分为16个节段(第17节段除外),33例患者共纳入528个心肌节段,根据LGE结果,将528个心肌节段分为两组:LGE阳性组纳入164个心肌节段、LGE阴性组纳入364个心肌节段。纳入标准为:不明原因的左心室扩张,射血分数下降(LVEF<50%),经冠状动脉造影检查无明显冠状动脉狭窄及心肌梗死病史,伴不伴心力衰竭等临床表现的患者[6]。排除标准为:明显冠状动脉疾病、急慢性心肌梗死、心脏负荷性疾病及图像质量不合格等。另选取同期年龄、性别相匹配,于我院行心电图、血生化、CMR及冠脉相关等检查未见异常的健康人33名作为对照组,男24例,女9例,年龄18~72 (47.70±14.94)岁。本研究经过本单位医学伦理委员会批准,免除受试者知情同意。

点击查看大图
图1
患者男,55岁,确诊为NIDCM。A~C:分别显示左室心肌17节段3D RS、CS、LS应力牛眼图
图2
A~D:为左心室应力后处理方法,在心室舒张末期短轴、三腔心、四腔心切面勾画心内膜及心外膜
chamber and four chamber views at the end of diastolic phase.
点击查看大图
图1
患者男,55岁,确诊为NIDCM。A~C:分别显示左室心肌17节段3D RS、CS、LS应力牛眼图
图2
A~D:为左心室应力后处理方法,在心室舒张末期短轴、三腔心、四腔心切面勾画心内膜及心外膜
chamber and four chamber views at the end of diastolic phase.
1.2 仪器与试剂

扫描仪器为西门子3.0 T CMR扫描仪,梯度场强为80 mT/m,梯度切换率为200 mT/(m·ms)。晚期增强使用钆喷酸葡胺注射液及0.9%生理盐水。

1.3 扫描方法及参数

(1)定位扫描:研究对象取仰卧位,采用心电呼吸门控技术,得到以心脏为中心的左室短轴、两腔、流出道、四腔心长轴切面。CMR电影成像采用稳态自由进动(steady state free precession SSFP)序列,于呼气末采集。晚期增强为经静脉注入对比剂8~10 min后于呼气末屏气采集,扫描切面同电影序列。左室短轴扫描范围为自心室基底部至心尖部,采集8~12层,层厚8 mm。(2)扫描参数:电影序列:TR 41.3 ms,TE 1.5 ms,翻转角70°,FOV 360 mm×340 mm,矩阵192×256。LGE:TE 2.6 ms,TR 750 ms,翻转角70°,反转时间TI (根据扫描时选取心肌最黑层面的TI值,一般为275~300 ms);FOV 340 mm×360 mm,矩阵192×256。

1.4 图像后处理

图像后处理使用CVI 42软件,利用CMR-FT技术进行心功能及应变处理。心功能是在左室短轴电影序列的收缩、舒张末期由软件自动识别心室的心内外膜轮廓,人为手动的进行适当调整,心功能参数包括左室射血分数(left ventricular ejection fraction,LVEF)、左室舒张末期容积(left ventricular end-diastolic volume,LVEDV)、左室收缩末期容积(left ventricular end-systolic volume,LVESV) 、左室质量(left ventricular mass,LVM)。应变分析是在左室短轴、长轴电影序列的舒张末期勾画左室的心内外膜,于左室短轴切面标出室间隔位置(图2A~D),得到心肌整体及各节段各方向上的应力变化值,3D应变参数为整体及节段的径向应变(radial strain,RS)、周向应变(circumferential strain,CS)、纵向应变(longitudinal strain,LS)。

1.5 统计学分析

采用SPSS 20.0 统计分析软件进行处理。所有测量值用均数±标准差表示。两独立样本间根据是否满足正态分布选择独立样本t检验或者Wilcoxon秩和检验;使用Pearson分析法进行LVEF与左室整体应变的相关性分析。使用受试者工作特性(receiver operating characteristic,ROC)曲线及Logistic回归模型对左室LGE阳性心肌节段3D应变参数的诊断价值进行评估及预测。P<0.05为差异具有统计学意义。

2 结果
2.1 可重复性检验

从33例NIDCM患者中随机抽取15例,由两位放射科医师分别独立进行应变后处理。将其测量的数值进行组内相关系数(ICC)分析。结果显示左心室整体3D应变参数测量结果的ICC值均>0.75,见表1,各应变参数测量结果表现很好的可重复性。

点击查看表格
表1

NIDCM组CMR-FT 3D应变参数测量组内相关系数

Tab. 1

Intra-class correlation coefficient of CMR-FT 3D strain parameters in NIDCM group

表1

NIDCM组CMR-FT 3D应变参数测量组内相关系数

Tab. 1

Intra-class correlation coefficient of CMR-FT 3D strain parameters in NIDCM group

应变参数ICCICC (95% CIx¯±s)P
GRS0.9360.743±0.984<0.001
GCS0.9400.757±0.985<0.001
GLS0.9870.947±0.997<0.001

注:NIDCM:非缺血性扩张型心肌病;CMR-FT:心脏磁共振组织追踪技术;GRS:整体径向应变;GCS:整体周向应变;GLS:整体纵向应变。

2.2 NIDCM组与对照组左室心功能参数比较

NIDCM组LVEDV、LVESV、LVM较对照组增高,LVEF较对照组减低,组间差异显著(P值均<0.001;表2)。

点击查看表格
表2

NIDCM组与对照组左心功能参数比较(x¯±s)

Tab. 2

Comparison of left ventricular function parameters between NIDCM group and control group(x¯±s)

表2

NIDCM组与对照组左心功能参数比较(x¯±s)

Tab. 2

Comparison of left ventricular function parameters between NIDCM group and control group(x¯±s)

左心功能参数NIDCM对照组P
LVEDV (mL)303.99±89.34123.53±26.45<0.001
LVESV (mL)247.21±14.3642.06±2.09<0.001

LVEF (%)

LVM (g)

19.08±1.34

115.87±7.37

66.17±0.87

73.75±4.15

<0.001

<0.001

注:NIDCM:非缺血性扩张型心肌病;CMR-FT:心脏磁共振组织追踪技术;GRS:整体径向应变;GCS:整体周向应变;GLS:整体纵向应变。

2.3 NIDCM组与对照组左室心肌整体及各部3D应变参数比较

NIDCM组左室整体、基底部、中间部及心尖部RS、CS、LS较对照组减低,各组间差异显著(P值均<0.001;表3)。

点击查看表格
表3

NIDCM组与对照组左心室整体及节段应变参数(x¯±s)

Tab. 3

3D Global and regional strain parameters of left ventricle in NIDCM group and control group (x¯±s)

表3

NIDCM组与对照组左心室整体及节段应变参数(x¯±s)

Tab. 3

3D Global and regional strain parameters of left ventricle in NIDCM group and control group (x¯±s)

左心室应变参数NIDCM对照组P
GRS10.28±4.2436.99±10.200.001
GCS-6.90±2.83-19.92±3.670.001
GLS-3.32±0.98-10.74±0.860.001
BRS16.40±2.0046.72±2.570.001
BCS-7.45±0.53-17.60±0.610.001
BLS-1.29±1.18-4.03±1.920.001
MRS10.15±0.7734.80±1.740.001
MCS-6.80±0.49-20.08±0.640.001
MLS-3.63±0.88-9.87±1.160.001
ARS9.47±1.1241.53±4.970.001
ACS-7.26±0.70-22.44±0.830.001
ALS-6.36±0.55-14.27±1.250.001

注:NIDCM:非缺血性扩张型心肌病;GRS:整体径向应变;GCS:整体周向应变;GLS:整体纵向应变;BRS:基底段径向应变;BCS:基底段周向应变;BLS:基底段纵向应变;MRS:中段径向应变;MCS:中段周向应变;MLS:中段纵向应变;ARS:心尖段径向应变;ACS:心尖段周向应变;ALS:心尖段纵向应变。

2.4 NIDCM组LVEF与左室整体3D应变参数相关性分析

LVEF与左心室整体周向应变(global circumferential strain,GCS) 呈负相关(r=-0.460,P<0.01),与整体径向应变(global radial strain,GRS)、整体纵向应变(global longitudinal strain,GLS)无相关(P值均>0.05;表4)。

点击查看表格
表4

NIDCM组LVEF与左室整体3D应变参数相关性分析

Tab. 4

Correlation analysis between LVEF and 3D strain parameters of left ventricle in NIDCM group

表4

NIDCM组LVEF与左室整体3D应变参数相关性分析

Tab. 4

Correlation analysis between LVEF and 3D strain parameters of left ventricle in NIDCM group

组别rP
LVEF-GRS0.175>0.05
LVEF-GCS-0.460<0.05
LVEF-GLS-0.236>0.05

注:NIDCM:非缺血性扩张型心肌病;LVEF:左室射血分数;GRS:整体径向应变;GCS:整体周向应变;GLS:整体纵向应变。

2.5 NIDCM组内心肌LGE阳性节段与LGE阴性节段3D 应变参数比较

NIDCM组内LGE阳性节段3D RS、CS、LS较LGE阴性节段明显减低,各组间差异显著(P值均<0.001;表5)。

点击查看表格
表5

NIDCM组内LGE阳性节段与LGE阴性节段3D应变参数比较(x¯±s)

Tab. 5

Difference analysis between LGE-positive segment and LGE-negative segment in NIDCM group (x¯±s)

表5

NIDCM组内LGE阳性节段与LGE阴性节段3D应变参数比较(x¯±s)

Tab. 5

Difference analysis between LGE-positive segment and LGE-negative segment in NIDCM group (x¯±s)

组别LGE阳性LGE阴性P
RS8.03±0.5519.72±1.03<0.001
CS-5.29±0.64-6.65±0.49<0.001
LS-4.92±0.513.70±1.32<0.001

注:NIDCM:非缺血性扩张型心肌病;LGE:晚期钆增 强;RS:径向应变;CS:周向应变;LS:纵向应变。

2.6 NIDCM组内心肌LGE阳性节段3D应变参数及其诊断价值评估

单因素ROC分析:以延迟扫描心肌节段有无强化将NIDCM组所有心肌节段分为LGE阳性节段(164个)及LGE阴性节段(364个),对RS、CS、LSK0参数分别独立进行单因素ROC分析,结果显示,心肌RS (AUC=0.785)具有一定的诊断价值;CS (AUC=0.584)及LS (AUC=0.665)的诊断价值较低(图3A)。

点击查看大图
图3
A:ROC曲线图显示LGE阳性心肌节段各3D应变参数独立诊断时的预测概率P;B:ROC曲线图显示LGE阳性心肌节段各3D应变参数联合诊断时的预测概率P
Fig. 3
A: ROC curve shows the predictive probability P for independent diagnosis of 3D strain parameters of LGE positive myocardial segments. B: ROC curve shows the predictive probability P of 3D strain parameters in LGE positive myocardial segments.
点击查看大图
图3
A:ROC曲线图显示LGE阳性心肌节段各3D应变参数独立诊断时的预测概率P;B:ROC曲线图显示LGE阳性心肌节段各3D应变参数联合诊断时的预测概率P
Fig. 3
A: ROC curve shows the predictive probability P for independent diagnosis of 3D strain parameters of LGE positive myocardial segments. B: ROC curve shows the predictive probability P of 3D strain parameters in LGE positive myocardial segments.

多因素联合ROC分析:将三个应变参数两两之间及三者联合分别作为自变量X,根据二元Logistic回归计算多因素联合预测概率P进行多指标联合诊断ROC分析,结果显示,RS与CS (AUC=0.789)、RS与LS (AUC=0.811)、CS与LS (AUC=0.712)、三者联合诊断时的AUC=0.810,说明CS在三者联合诊断时无明显诊断价值,故选取RS与LS联合诊断NIDCM心肌强化节段,AUC及预测概率P较各指标独立诊断时提高(图3B;表6)。

点击查看表格
表6

NIDCM组内心肌LGE阳性节段3D应变参数ROC分析曲线

Tab. 6

ROC analysis curve of 3D strain parameters in LGE positive segments of myocardium in NIDCM group

表6

NIDCM组内心肌LGE阳性节段3D应变参数ROC分析曲线

Tab. 6

ROC analysis curve of 3D strain parameters in LGE positive segments of myocardium in NIDCM group

组别95%置信区间(x¯±s)AUC
RS0.745±0.8250.785
CS0.532±0.6370.584
LS0.633±0.7300.665
RS+CS0.749±0.8290.789
RS+LS0.773±0.8480.811
CS+LS0.664±0.7600.712
RS+CS+LS0.773±0.8480.810

注:NIDCM:非缺血性扩张型心肌病;LGE:晚期钆增 强;RS:径向应变;CS:周向应变;LS:纵向应变。

3 讨论

目前,NIDCM的研究逐渐转向心肌应变方向,但是由整体向局部应变方面少有研究。CMR心肌标记是评价心肌应变的金标准[7],但是其分析需要在扫描中前瞻性地获取标记图像,时间分别率有限,CMR-FT技术的优势为可回顾性基于SSFP序列,不需要额外的序列,能够提供快速后处理得到应变参数值[4]。此外,与2D CMR-FT相比,3D CMR-FT提供了优越的可重复性及观察者内部和观察者之间的可变性[8],因为基于2D CMR-FT在三维空间中会存在特征丢失的问题,并且会由于对选择的层面跟踪不完善使得数据的可重复性出现问题,从有限的短轴和长轴的应变评估可能不能代表整体心肌功能[9]

3.1 可重复性检验

本研究的可重复性检验结果显示2名医师左心室整体3D应变参数测量结果的ICC分析均表现出很好的可重复性,提示3D CMR-FT具有良好的可重复性,这在很多研究中得以证实[10, 11, 12]

3.2 心功能与应力相关性分析

LVEF被认为是NIDCM中重要的预后因素之一,目前的指南推荐LVEF小于35%的症状性心力衰竭患者采用ICD[13]。本研究33例患者中,32例患者LVEF小于35%,1例患者LVEF为38%。以LVEF为参考标准,与左室心肌3D GRS、GCS、GLS参数进行相关性分析,得出左室GCS与LVEF相关(P<0.01),这与Berganza等[10]研究儿童法洛四联症患者左室GCS与心室舒张末期容积强相关结果相似,这说明GCS与LVEF的变化有关,可能是本研究中NIDCM患者不良预后的指标,左室收缩功能是一个复杂的协调过程,包括纵向收缩、周向缩短和径向增厚。对于心肌应变参数的测量可以提供比射血分数更有价值的预后信息,但是在本研究中需要进一步的预后研究证明。根据之前的研究显示左室心肌GCS是NIDCM患者不良事件的独立预测因子[14]。此外其他研究显示GLS[15, 16]也被证明与扩心病患者的不良结局显著相关。故对于心肌应变的预后研究极为重要。

3.3 心肌应变分析的诊断价值

NIDCM心肌纤维化的LGE图像上的典型表现为心肌中层的线状强化,约30%的NIDCM病例有典型的线性中壁LGE,呈非冠状分布,主要分布在室间隔内[17, 18, 19](图4),心肌纤维化为心脏不良事件的主要预测因子,其发生的机制包括炎症、神经介质的改变及微血管缺血[20]。本研究中对NIDCM患者中164个LGE阳性节段与264个LGE阴性节段进行3D应变参数的比较、对各应变参数进行单因素及多因素联合诊断ROC分析,结果显示LGE阳性心肌节段3D RS、CS、LS较LGE阴性心肌节段明显减低(P值均<0.001),这说明LGE阳性心肌节段心肌张力较LGE阴性节段受损较为严重,相对缺少正常的心肌细胞。

点击查看大图
图4
患者男,55岁,确诊为非缺血性扩张型心肌病。A:左室短轴LGE显示基底部间隔壁心肌不均匀强化(箭);B、C:左室短轴LGE显示中间部间隔壁心肌中层线状强化(箭);D:左室四腔心LGE显示左室间隔壁心肌中层的线状强化(箭)
Fig. 4
A 55-year-old man with non-ischemic dilated cardiomyopathy. A: Short-axis LGE showed inhomogeneous enhancement of the basal septum (arrow). B, C: Short-axis LGE showed linear enhancement of the mid-layer of middle septum. D: 4-chamber LGE showed linear enhancement of the mid-layer.
点击查看大图
图4
患者男,55岁,确诊为非缺血性扩张型心肌病。A:左室短轴LGE显示基底部间隔壁心肌不均匀强化(箭);B、C:左室短轴LGE显示中间部间隔壁心肌中层线状强化(箭);D:左室四腔心LGE显示左室间隔壁心肌中层的线状强化(箭)
Fig. 4
A 55-year-old man with non-ischemic dilated cardiomyopathy. A: Short-axis LGE showed inhomogeneous enhancement of the basal septum (arrow). B, C: Short-axis LGE showed linear enhancement of the mid-layer of middle septum. D: 4-chamber LGE showed linear enhancement of the mid-layer.

心肌应变相对射血分数来说可以反映心肌疾病的细微异常。心肌RS为心外膜到心内膜方向心肌纤维的改变,CS为短轴层面心肌纤维长度的变化,LS为长轴心肌纤维长度的改变。单因素ROC分析结果显示RS对NIDCM强化节段具有一定的诊断价值。多因素ROC分析显示RS与LS联合诊断较各指标独立诊断时提高,而CS的诊断价值有限。以上结果这与Oda等[21]在使用应变参数检测心脏淀粉样变LGE阳性节段中的结论相似。这说明本研究中NIDCM患者的LGE阳性节段相对正常节段心肌来说,心肌纤维化可能累及到心内膜,RS可能是独立诊断NIDCM心肌纤维化及纤维化方向良好指标,并且与心肌纤维化关系较为密切。LGE诊断心肌局灶性纤维化的良好工具但是对于诊断心肌弥漫性纤维化较为困难[22],由CMR衍生的细胞外体积分数(extracellular volume fraction,ECV)可以很好地检测心肌弥漫性纤维化[23],并且研究显示ECV与NIDCM患者不良临床结局相关[24]。关于NIDCM应变与心肌纤维化的关系研究显示[25],心肌节段应变与ECV显著相关,这也说明心肌纤维化可以作为一种无创成像的标记物,在没有任何对比剂的情况下检测心肌纤维化,这与本研究中心肌节段应变对心肌纤维化的诊断得出的结论相似。并且扩张型心肌病的早期心肌纤维化已成为临床潜在的治疗靶点[4],心肌应变可以早期地评估心肌损伤[26],综上可得出心肌应变可在不需要对比剂剂的前提下更敏感地识别NIDCM心肌纤维化具有潜在的诊断价值,以早期指导临床治疗,对NIDCM进行早期干预,提高患者的生存质量,改善患者预后,降低患者死亡率。

3.4 局限性

本研究有一定的局限性。首先,本研究是单中心小样本,不能明确给出心肌纤维化节段应力的确切数值,从而限制这些结果的普遍性。第二,心肌纤维化为NIDCM不良预后的指标,本研究未对患者进行随访,记录不良心血管事件发生情况,评估左室应变与NIDCM患者长期预后之间的关系。第三,NIDCM在影响左心功能及应变的同时,右心也会不同程度地受到影响,未对右心应变等参数进行评估。

本研究探讨CMR-FT技术在评估NIDCM左室心功能及应变应用的可行性及可重复性;利用该技术,基于常规电影序列对NIDCM患者心肌3D应变参数进行分析,以评估3D应变参数对NIDCM心肌纤维化的诊断价值。

综上所述,利用CMR-FT技术对心肌3D应变参数在无需对比剂的情况下识别NIDCM心肌纤维化具有潜在的临床诊断价值,该技术的普及需要大的样本量、多中心研究进行分析,以确定各种心肌疾病应变参数的诊断阈值,达到对心肌病变的定量、定性诊断,使该技术在心脏疾病中得到普及。

利益冲突

全体作者均声明无利益冲突。

参考文献References
1
HallidayBP, ClelandJGF, GoldbergerJJ, et al. Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future[J]. Circulation, 2017, 136(2): 215-231. DOI:10.1161/CIRCULATIONAHA.116.027134.
2
MaronBJ, TowbinJA, ThieneG, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention[J]. Circulation, 2006, 113(14): 1807-1816. DOI:10.1161/CIRCULATIONAHA.106.174287.
3
ChimuraM, OnishiT, TsukishiroY, et al. Longitudinal strain combined with delayed-enhancement magnetic resonance improves risk stratification in patients with dilated cardiomyopathy[J]. Heart, 2016, 103(9), 679-686. DOI:10.1136/heartjnl-2016-309746.
4
CuiY, CaoY, SongJ, et al. Association between myocardial extracellular volume and strain analysis through cardiovascular magnetic resonance with histological myocardial fibrosis in patients awaiting heart transplantation[J]. J Cardiovasc Mag Reson, 2018, 20(1): 25. DOI:10.1186/s12968-018-0445-z.
5
ParkSM, KimYH, AhnbvCM, et al. Relationship between ultrasonic tissue characterization and myocardial deformation for prediction of left ventricular reverse remodelling in non-ischaemic dilated cardiomyopathy[J]. Eur J Echocardiogr, 2011, (12): 887-894. DOI:10.1093/ejechocard/jer177.
6
JappAG, GulatiA, CookSA, et al. The diagnosis and evaluation of dilated cardiomyopathy[J]. J Am Coll Cardio, 2016, 67: 2996-3010. DOI:10.1016/j.jacc.2016.03.590.
7
JeungMY, GermainP, CroisilleP, et al. Myocardial tagging with MR imaging: overview of normal and pathologic findings[J]. Radiographics, 2012, 32(5): 1381-1398. DOI:10.1148/rg.325115098.
8
GattiM, PalmisanoA, FalettiR, et al. Two-dimensional and three-dimensional cardiac magnetic resonance feature-tracking myocardial strain analysis in acute myocarditis patients with preserved ejection fraction[J]. Int J Cardiovasc Imaging, 2019, 35(6): 1101-1109. DOI:10.1007/s10554-019-01588-8.
9
LiuT, GaoY, WangH, et al. Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy[J]. Heart, 2020. [Online ahead of print]. DOI:10.1136/heartjnl-2020-317949.
10
BerganzaFM, AlbaCGD, ÖzcelikN, et al. Cardiac magnetic resonance feature tracking biventricular two-dimensional and three-dimensional strains to evaluate ventricular function in children after repaired tetralogy of fallot as compared with healthy children[J]. Pediatr Cardiol, 2017, 38(3): 566-574. DOI:10.1007/s00246-016-1549-6.
11
SchusterA, StahnkeVC, Unterberg-BuchwaldC, et al. Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility[J]. Clin Radiol, 2015, 70(9): 989-998. DOI:10.1016/j.crad.2015.05.006.
12
KhalafA, TaniD, TadrosS, et al. Right- and left-ventricular strain evaluation in repaired pediatric tetralogy of fallot patients using magnetic resonance tagging[J]. Pediatr Cardiol, 2013, 34(5): 1206-1211. DOI:10.1007/s00246-013-0631-6.
13
PradellaS, GrazziniG, De AmicisC, et al. Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies[J]. La Radiologia Medica, 2020, 125(11): 1056-1071. DOI:10.1007/s11547-020-01276-x.
14
ShuSL, WangJ, WangC, et al. Prognostic value of feature-tracking circumferential strain in dilated cardiomyopathy patients with severely reduced ejection fraction incremental to late gadolinium enhancement[J]. Current Med Sci, 2021, 41(1): 158-166. DOI:10.1007/s11596-021-2331-4.
15
RomanoS, JuddRM, KimRJ, et al. Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement[J]. JACC Cardiovasc Imaging, 2018, 11(10): 1419-1429. DOI:10.1016/j.jcmg.2017.10.024.
16
RomanoS, JuddRM, KimRJ, et al. Feature-tracking global longitudinal strain predicts mortality in patients with preserved ejection fraction: a multicenter study[J]. JACC Cardiovasc Imaging, 2020, 13(4): 940-947. DOI:10.1016/j.jcmg.2019.10.004.
17
SolerR, MéndezC, RodríguezE, et al. Phenotypes of hypertrophic cardiomyopathy. An illustrative review of MRI findings[J]. Insights Imaging, 2018, 9(6): 1007-1020. DOI:10.1007/s13244-018-0656-8.
18
BrownPF, MillerC, MarcoDA, et al. Towards cardiac mri based risk stratification in idiopathic dilated cardiomyopathy[J]. Heart, 2018, 105(4): 270-275. DOI:10.1136/heartjnl-2018-313767.
19
McKennaWJ, MaronBJ, ThieneG. Classification, epidemiology, and global burden of cardiomyopathies[J]. Circul Res, 2017, 121(7), 722-730. DOI:10.1161/circresaha.117.309711.
20
LehrkeS, LossnitzerD, SchobM, et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy[J]. Heart, 2010, 97(9): 727-732. DOI:10.1136/hrt.2010.205542.
21
OdaS, UtsunomiyaD, NakauraT, et al. Identification and assessment of cardiac amyloidosis by myocardial strain analysis of cardiac magnetic resonance imaging[J]. Circ J, 2017, 81(7): 1014-1021. DOI:10.1253/circj.CJ-16-1259.
22
KaramitsosTD, ArvanitakiA, KarvounisH, et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imaging, 2019, 13(5): 1221-1234. DOI:10.1016/j.jcmg.2019.06.030.
23
MessroghliDR, MoonJC, FerreiraVM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for cardiovascular magnetic resonance (SCMR) endorsed by the european association for cardiovascular imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. DOI:10.1186/s12968-017-0389-8.
24
VitaT, GraniC, AbbasiSA, et al. Comparing CMR mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1659-1669. DOI:10.1016/j.jcmg.2018.08.021.
25
AzumaM, KatoS, KodamaS, et al. Relationship between the cardiac magnetic resonance derived extracellular volume fraction and feature tracking myocardial strain in patients with non-ischemic dilated cardiomyopathy. Magn Reson Imaging, 2020, 74: 14-20. DOI:10.1016/j.cmr.2020.09.004.
26
王杰, 陈玉成. 磁共振成像评价左室心肌应变的技术进展及临床应用[J]. 心血管病学进展, 2018, 39(01): 53-57. DOI:10.16806/j.cnki.issn.1004-3934.2018.01.013.
WangJ, ChenYC. MRI evaluating myocardial strain of left ventricle:technical progress and clinical application[J]. Advances Cardiovasc Dis, 2018, 39(01): 53-57. DOI:10.16806/j.cnki.issn.1004-3934.2018.01.013.
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
【进展】JACC:扩张型心肌病诊断和评估,要点记下来
心肌炎患者,该如何诊断、危险分级和管理?(上)
病例 | 罕见的重症心肌病伴2型强直性肌营养不良1例
急性心肌炎的CMR应用新进展
学术荟萃|张抒扬:转甲状腺素蛋白淀粉样变心肌病的无创诊断研究进展
急性应激性心肌病 (Takotsubo) 心脏形变、收缩和舒张时间及早期心肌纤维化改变伴随表观的恢复...
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服