打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
重大突破!清华大学团队突破 MRAM 技术瓶颈

防水连接器

台湾科技部在14日发表由清华大学团队研发出的最新磁阻式随机存取内存(MRAM)技术,称对半导体产业发展将有决定性的影响力。

由于摩尔定律将近,业界正努力寻求新一代的内存技术,而MRAM就是被关注的焦点之一,这是一种非挥发性内存技术,工作原理是应用巨磁阻效应,自1990 年代就开始发展。其速度不下于SRAM,且如闪存一般能在断电后保留数据,能耗更低于 DRAM,是未来通用内存的候选技术之一。

顾名思义,所谓的磁阻式随机存取内存,也就是靠电阻来记录数字讯号的技术。简单来讲,其结构大致分为三层,上层是自由翻转的铁磁层,可以快速处理数据,底层则是固定的铁磁层,可用做储存数据,两层中则以氧化层隔开。当此二铁磁层的磁化方向相同,为低电阻态,代表讯号 1,若磁化方向相反,则是高电阻态,代表信号 0。

早期的设计,不仅需要大电流来产生磁场才能使用,过低的功耗也引起不了业界的兴趣,而器件在缩小的过程中,感应场的重迭容易引发读写错误。且原本透过在底层黏上反铁磁层,以交换偏压(Exchange bias)钉锁住磁矩,然而这样旧操控方法却有很大的局限,必须先将器件升温,然后于外加磁场下降温,才能改变钉锁方向,这在实际应用上不太现实,如今新技术克服了这些瓶颈。

清华大学工学院长赖志煌与物理系教授林秀豪,带领博士生林柏宏、杨博元等组成跨领域团队,研发出的 MRAM 新一代核心技术,是在底层铁磁-反铁磁奈米膜层再加上一层奈米级白金,并透过电子自旋流来操控磁性翻转,此方法是全球首创,甚至一度引发对实验结果的质疑,认为是器件升温所导致,但透过先进的实验技术反复测量后,终于说服审稿委员的质疑。

此研究结果已于今年 2 月登上世界知名期刊《Nature Materials》。此技术不再需要加热降温,也不会对其他电子零件造成热伤害,并可与现有电子组件的制程无缝接轨,是半导体产业的重大突破,预计今年将与 STT-MRAM 技术整合,并在4年后令新世代 MRAM 原型现身,将带动相关市场发展。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
清华大学研究团队创新磁性翻转机制突破MRAM技术瓶颈
Sivaram:存储级内存不会取代DRAM或NAND
营销团队建设瓶颈突破
当前存储器和新兴非易失性存储器技术的特点
断电也能保存数据的MRAM技术精髓
清华光电计算新突破:芯片性能提升万倍,研究登顶Nature
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服