打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
卡门涡街

1、卡门涡街
在流体中安置阻流体,在特定条件下在阻流体下游的两侧,会产生两道非对称地排列的旋涡,其中一侧的旋涡循时针方向转动,另一旋涡则反方向旋转,这两排旋涡相互交错排列,各个旋涡和对面两个旋涡的中间点对齐,如街道两边的街灯般,这种现象,因匈牙利裔美国空气动力学家西奥多·冯·卡门最先从理论上阐明而得名卡门涡街。
  1911年,西奥多·冯·卡门在德国格丁根大学空气动力学家路德维希·普朗特手下任助教。当时普朗特正研究边界层现象,他命一位攻读博士学位的研究生卡尔·希门茨(KarlHiemenz)设计一个流水槽,以便观察流水经过一个圆柱体时的边界层,并令希门茨测量圆柱体表面上不同点的压力。希门茨发现圆柱体表面的压力并非如预期的平稳,而是剧烈地振动。他将这个情况向普朗特汇报,普朗特说,“你的圆柱体显然不圆”。希门茨细心将圆柱体磨了又磨,测了又测,不见改进。冯·卡门走过实验室时不在意地问道:“卡尔,怎么样了”?卡尔答道“还是振动”,过几天又问:“卡尔,怎么样了?”,“还是振动得厉害”。这引起冯·卡门注意了,他想“也许振动不是偶然的,而是由内在原因决定的”。于是冯·卡门从理论上进行思考,起初他设想圆柱体后的水流形成两道对称排列但反方向的旋涡,但发现这种状态不能维持,很快不稳定。于是他假设两道旋涡交错排列,计算结果表明这种状态能够维持。冯·卡门将计算结果向导师普朗特报告。普朗特命冯·卡门写出论文发表。这是冯·卡门的第一篇论文,也是他的成名之作。冯·卡门关于卡门涡街的理论被后来的实验证实。“卡门涡街”的名称,沿用至今。
2 形成条件 
  卡门涡街形成的条件:对于在流体中的圆柱体雷诺数(47<Re<107。

  当雷诺数=30时,圆柱体后的液体呈平陆状态;

  当雷诺数=40,圆柱体后的液体开始出现正弦式波动;

  当雷诺数=47,圆柱体后的液体,前端仍然呈正弦状,后端则逐渐脱离正弦波动;

  当雷诺数>47,圆柱体后的液体,出现卡门涡街

  当雷诺数在50至85之间,圆柱体后的液体压力,呈等振幅波动

  当雷诺数=185时,圆柱体后的液体压力,呈非均匀振幅波动。

3 频率 
  卡门涡街起因流体流经阻流体时,流体从阻流体两侧剥离,形成交替的涡流。这种交替的涡流,使阻流体两侧流体的瞬间速度不同。流体速度不同,阻流体两侧受到的瞬间压力也不同,因此使阻流体发生振动。振动频率与流体速度成正比,与阻流体的正面宽度成反比。卡门涡街频率与流体速度和阻流体(旋涡发生体)宽度有如下关系:

  f=SrV/d

  其中:

  f=卡门涡街频率Sr=斯特劳哈尔数(~0.2)V=流体速度d=阻流体迎面宽度

  4毫米粗的电线,在每小时90公里的风速下,卡门涡街频率为:

  涡街流量计,通过测量卡门涡街频率,测得流量。
4 应用 
  卡门涡街可以解释许多现象。在冯·卡门论文发表后,英国物理学家约翰·威廉斯特拉斯·瑞利勋爵最先应用卡门涡街理论,他在1915年发表一篇论文,用卡门涡街的交替旋涡解释风弦琴发声的原理。风弦琴在十八世纪欧洲流行,在木制共鸣箱上安装几条琴弦,风吹琴弦,产生卡门涡街,卡门涡街频率和琴弦的固有频率发生共振而发声。中国古代在风筝上安装竹片,风吹发声如筝,也是卡门涡街原理造成的。其他例子包括风吹电线发声等等。
  1937年德国物理学家古切(F.Gutsche),用卡门涡街解释为什么船舶的螺旋桨在水中发出的声音。一位法国潜水艇水兵告诉冯·卡门,当他那艘潜艇的航速超过7节时,潜望镜的旋涡和潜望镜的固有频率发生共振,因此潜望镜完全不能使用。1950年英国物理学家卡尔文·冈维尔(CalvinGongwer)用卡门涡街解释为什么船舶的水翼,以及潜水艇的螺旋桨会发出高频率的声音;当时美国一艘核潜艇的螺旋桨就有这个毛病,在水下潜行时容易被敌方的声纳探测出来。他和老师冯·卡门一道研究出改进美国核潜艇的螺旋桨的方法,解决了这个问题。

  在工业中广泛使用的卡门涡街流量计,就是利用卡门涡街现象制造的一种流量计。它将涡旋发生体垂直插入到流体中时,流体绕过发生体时会形成卡门涡街,在满足一定的条件下,非对称涡列就能保持稳定,此时,涡旋的频率f与流体的流速v及涡旋发生体的宽度d有如下关系:f=St(v/d)

  其中St为斯特劳哈尔数,在正常工作条件下为常数。

  卡门涡街流量计有许多优点:可测量液体、气体和蒸汽的流量;精度可达±1%(指示值);结构简单,无运动件,可靠、耐用;压电元件封装在发生体中,检测元件不接触介质;使用温度和压力范围宽,使用温度最高可达400℃;并具备自动调整功能,能用软件对管线噪声进行自动调整。

5 建筑物倒塌
  卡门涡街还可能引起建筑物倒塌。最著名的天灾是1940年11月7日美国华盛顿州塔科马海峡吊桥(TacomaNarrowBridge)崩塌事件。塔科马海峡吊桥倒塌后第二天,华盛顿州州长宣布该座吊桥的设计牢靠,计划按同样设计重建。冯·卡门觉得此事不妥,便觅来一个塔科马海峡吊桥模型带回家中,放在书桌上,开动电扇吹风,模型开始振动起来,当振动频率达到模型的固有频时,发生共振,模型振动剧烈。果然不出所料,塔科马海峡吊桥倒塌事件的元凶,正是卡门涡街引起桥梁共振。其后冯·卡门令助手在加州理工学院风洞内,进一步测试塔科马海峡吊桥模型,取得数据,然后发一份电报给华盛顿州州长:“如果按旧设计重建一座新桥,那座新桥会一模一样的倒塌”。州长设立一个塔科马海峡吊桥倒塌事件考察小组,冯·卡门系成员之一。经一番争论,冯·卡门终于说服当时不懂空气动力学知识的桥梁设计师,在建新桥之前,先将桥梁模型进行风洞测试。会议决定采用新的设计避免卡门涡街对桥梁引起的祸害。
  圆柱形的工厂烟囱或冷却塔也有可能因卡门涡街引起共振而倒塌。1965年11月,英国西约克郡费里布里奇发电站两座一百多米高的冷却塔,在大风中因卡门涡街引起共振倒塌。解决办法是在烟囱或冷却塔的上端安装螺旋形的扇叶,避免卡门涡街形成。


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
(1)【卡门涡街】又称卡门漩涡[转]
不懂震,就是不懂涡街!
流体力学科普| 卡门涡街简介
流体力学
智能涡街流量计应用
桥梁振动:颤振还是涡振?
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服