打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
Linux/include/linux/mm.h get_page
  1 #ifndef _LINUX_MM_H
  2 #define _LINUX_MM_H
  3 
  4 #include <linux/errno.h>  5 
  6 #ifdef __KERNEL__
  7 
  8 #include <linux/gfp.h>  9 #include <linux/list.h> 10 #include <linux/mmdebug.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/prio_tree.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 
 17 struct mempolicy; 18 struct anon_vma; 19 struct file_ra_state; 20 struct user_struct; 21 struct writeback_control; 22 
 23 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
 24 extern unsigned long max_mapnr; 25 #endif 26 
 27 extern unsigned long num_physpages; 28 extern void * high_memory; 29 extern int page_cluster; 30 
 31 #ifdef CONFIG_SYSCTL 32 extern int sysctl_legacy_va_layout; 33 #else 34 #define sysctl_legacy_va_layout 0 35 #endif 36 
 37 extern unsigned long mmap_min_addr; 38 
 39 #include <asm/page.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 
 43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 
 45 /* to align the pointer to the (next) page boundary */
 46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 
 48 /*
 49  * Linux kernel virtual memory manager primitives.
 50  * The idea being to have a "virtual" mm in the same way
 51  * we have a virtual fs - giving a cleaner interface to the
 52  * mm details, and allowing different kinds of memory mappings
 53  * (from shared memory to executable loading to arbitrary
 54  * mmap() functions).
 55  */
 56 
 57 extern struct kmem_cache *vm_area_cachep; 58 
 59 #ifndef CONFIG_MMU 60 extern struct rb_root nommu_region_tree; 61 extern struct rw_semaphore nommu_region_sem; 62 
 63 extern unsigned int kobjsize(const void *objp); 64 #endif 65 
 66 /*
 67  * vm_flags in vm_area_struct, see mm_types.h.
 68  */
 69 #define VM_READ         0x00000001      /* currently active flags */
 70 #define VM_WRITE        0x00000002 71 #define VM_EXEC         0x00000004 72 #define VM_SHARED       0x00000008 73 
 74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 75 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 76 #define VM_MAYWRITE     0x00000020 77 #define VM_MAYEXEC      0x00000040 78 #define VM_MAYSHARE     0x00000080 79 
 80 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 81 #define VM_GROWSUP      0x00000200 82 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 83 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 84 
 85 #define VM_EXECUTABLE   0x00001000 86 #define VM_LOCKED       0x00002000 87 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 88 
 89                                         /* Used by sys_madvise() */
 90 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 91 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 92 
 93 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 94 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 95 #define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
 96 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 97 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 98 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 99 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */100 #define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */101 #define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */102 #define VM_ALWAYSDUMP   0x04000000      /* Always include in core dumps */103 104 #define VM_CAN_NONLINEAR 0x08000000     /* Has ->fault & does nonlinear pages */105 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */106 #define VM_SAO          0x20000000      /* Strong Access Ordering (powerpc) */107 #define VM_PFN_AT_MMAP  0x40000000      /* PFNMAP vma that is fully mapped at mmap time */108 109 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS111 #endif112 113 #ifdef CONFIG_STACK_GROWSUP114 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)115 #else116 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)117 #endif118 119 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)120 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK121 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))122 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)123 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)124 125 /*126  * special vmas that are non-mergable, non-mlock()able127  */128 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)129 130 /*131  * mapping from the currently active vm_flags protection bits (the132  * low four bits) to a page protection mask..133  */134 extern pgprot_t protection_map[16];135 136 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */137 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */138 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */139 140 /*141  * This interface is used by x86 PAT code to identify a pfn mapping that is142  * linear over entire vma. This is to optimize PAT code that deals with143  * marking the physical region with a particular prot. This is not for generic144  * mm use. Note also that this check will not work if the pfn mapping is145  * linear for a vma starting at physical address 0. In which case PAT code146  * falls back to slow path of reserving physical range page by page.147  */148 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)149 {150         return (vma->vm_flags & VM_PFN_AT_MMAP);151 }152 153 static inline int is_pfn_mapping(struct vm_area_struct *vma)154 {155         return (vma->vm_flags & VM_PFNMAP);156 }157 158 /*159  * vm_fault is filled by the the pagefault handler and passed to the vma's160  * ->fault function. The vma's ->fault is responsible for returning a bitmask161  * of VM_FAULT_xxx flags that give details about how the fault was handled.162  *163  * pgoff should be used in favour of virtual_address, if possible. If pgoff164  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear165  * mapping support.166  */167 struct vm_fault {168         unsigned int flags;             /* FAULT_FLAG_xxx flags */169         pgoff_t pgoff;                  /* Logical page offset based on vma */170         void __user *virtual_address;   /* Faulting virtual address */171 172         struct page *page;              /* ->fault handlers should return a173                                          * page here, unless VM_FAULT_NOPAGE174                                          * is set (which is also implied by175                                          * VM_FAULT_ERROR).176                                          */177 };178 179 /*180  * These are the virtual MM functions - opening of an area, closing and181  * unmapping it (needed to keep files on disk up-to-date etc), pointer182  * to the functions called when a no-page or a wp-page exception occurs. 183  */184 struct vm_operations_struct {185         void (*open)(struct vm_area_struct * area);186         void (*close)(struct vm_area_struct * area);187         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);188 189         /* notification that a previously read-only page is about to become190          * writable, if an error is returned it will cause a SIGBUS */191         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);192 193         /* called by access_process_vm when get_user_pages() fails, typically194          * for use by special VMAs that can switch between memory and hardware195          */196         int (*access)(struct vm_area_struct *vma, unsigned long addr,197                       void *buf, int len, int write);198 #ifdef CONFIG_NUMA199         /*200          * set_policy() op must add a reference to any non-NULL @new mempolicy201          * to hold the policy upon return.  Caller should pass NULL @new to202          * remove a policy and fall back to surrounding context--i.e. do not203          * install a MPOL_DEFAULT policy, nor the task or system default204          * mempolicy.205          */206         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);207 208         /*209          * get_policy() op must add reference [mpol_get()] to any policy at210          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure211          * in mm/mempolicy.c will do this automatically.212          * get_policy() must NOT add a ref if the policy at (vma,addr) is not213          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.214          * If no [shared/vma] mempolicy exists at the addr, get_policy() op215          * must return NULL--i.e., do not "fallback" to task or system default216          * policy.217          */218         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,219                                         unsigned long addr);220         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,221                 const nodemask_t *to, unsigned long flags);222 #endif223 };224 225 struct mmu_gather;226 struct inode;227 228 #define page_private(page)              ((page)->private)229 #define set_page_private(page, v)       ((page)->private = (v))230 231 /*232  * FIXME: take this include out, include page-flags.h in233  * files which need it (119 of them)234  */235 #include <linux/page-flags.h>236 237 /*238  * Methods to modify the page usage count.239  *240  * What counts for a page usage:241  * - cache mapping   (page->mapping)242  * - private data    (page->private)243  * - page mapped in a task's page tables, each mapping244  *   is counted separately245  *246  * Also, many kernel routines increase the page count before a critical247  * routine so they can be sure the page doesn't go away from under them.248  */249 250 /*251  * Drop a ref, return true if the refcount fell to zero (the page has no users)252  */253 static inline int put_page_testzero(struct page *page)254 {255         VM_BUG_ON(atomic_read(&page->_count) == 0);256         return atomic_dec_and_test(&page->_count);257 }258 259 /*260  * Try to grab a ref unless the page has a refcount of zero, return false if261  * that is the case.262  */263 static inline int get_page_unless_zero(struct page *page)264 {265         return atomic_inc_not_zero(&page->_count);266 }267 268 /* Support for virtually mapped pages */269 struct page *vmalloc_to_page(const void *addr);270 unsigned long vmalloc_to_pfn(const void *addr);271 272 /*273  * Determine if an address is within the vmalloc range274  *275  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there276  * is no special casing required.277  */278 static inline int is_vmalloc_addr(const void *x)279 {280 #ifdef CONFIG_MMU281         unsigned long addr = (unsigned long)x;282 283         return addr >= VMALLOC_START && addr < VMALLOC_END;284 #else285         return 0;286 #endif287 }288 289 static inline struct page *compound_head(struct page *page)290 {291         if (unlikely(PageTail(page)))292                 return page->first_page;293         return page;294 }295 296 static inline int page_count(struct page *page)297 {298         return atomic_read(&compound_head(page)->_count);299 }300 301 static inline void get_page(struct page *page)302 {303         page = compound_head(page);304         VM_BUG_ON(atomic_read(&page->_count) == 0);305         atomic_inc(&page->_count);306 }307 308 static inline struct page *virt_to_head_page(const void *x)309 {310         struct page *page = virt_to_page(x);311         return compound_head(page);312 }313 314 /*315  * Setup the page count before being freed into the page allocator for316  * the first time (boot or memory hotplug)317  */318 static inline void init_page_count(struct page *page)319 {320         atomic_set(&page->_count, 1);321 }322 323 void put_page(struct page *page);324 void put_pages_list(struct list_head *pages);325 326 void split_page(struct page *page, unsigned int order);327 328 /*329  * Compound pages have a destructor function.  Provide a330  * prototype for that function and accessor functions.331  * These are _only_ valid on the head of a PG_compound page.332  */333 typedef void compound_page_dtor(struct page *);334 335 static inline void set_compound_page_dtor(struct page *page,336                                                 compound_page_dtor *dtor)337 {338         page[1].lru.next = (void *)dtor;339 }340 341 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)342 {343         return (compound_page_dtor *)page[1].lru.next;344 }345 346 static inline int compound_order(struct page *page)347 {348         if (!PageHead(page))349                 return 0;350         return (unsigned long)page[1].lru.prev;351 }352 353 static inline void set_compound_order(struct page *page, unsigned long order)354 {355         page[1].lru.prev = (void *)order;356 }357 358 /*359  * Multiple processes may "see" the same page. E.g. for untouched360  * mappings of /dev/null, all processes see the same page full of361  * zeroes, and text pages of executables and shared libraries have362  * only one copy in memory, at most, normally.363  *364  * For the non-reserved pages, page_count(page) denotes a reference count.365  *   page_count() == 0 means the page is free. page->lru is then used for366  *   freelist management in the buddy allocator.367  *   page_count() > 0  means the page has been allocated.368  *369  * Pages are allocated by the slab allocator in order to provide memory370  * to kmalloc and kmem_cache_alloc. In this case, the management of the371  * page, and the fields in 'struct page' are the responsibility of mm/slab.c372  * unless a particular usage is carefully commented. (the responsibility of373  * freeing the kmalloc memory is the caller's, of course).374  *375  * A page may be used by anyone else who does a __get_free_page().376  * In this case, page_count still tracks the references, and should only377  * be used through the normal accessor functions. The top bits of page->flags378  * and page->virtual store page management information, but all other fields379  * are unused and could be used privately, carefully. The management of this380  * page is the responsibility of the one who allocated it, and those who have381  * subsequently been given references to it.382  *383  * The other pages (we may call them "pagecache pages") are completely384  * managed by the Linux memory manager: I/O, buffers, swapping etc.385  * The following discussion applies only to them.386  *387  * A pagecache page contains an opaque `private' member, which belongs to the388  * page's address_space. Usually, this is the address of a circular list of389  * the page's disk buffers. PG_private must be set to tell the VM to call390  * into the filesystem to release these pages.391  *392  * A page may belong to an inode's memory mapping. In this case, page->mapping393  * is the pointer to the inode, and page->index is the file offset of the page,394  * in units of PAGE_CACHE_SIZE.395  *396  * If pagecache pages are not associated with an inode, they are said to be397  * anonymous pages. These may become associated with the swapcache, and in that398  * case PG_swapcache is set, and page->private is an offset into the swapcache.399  *400  * In either case (swapcache or inode backed), the pagecache itself holds one401  * reference to the page. Setting PG_private should also increment the402  * refcount. The each user mapping also has a reference to the page.403  *404  * The pagecache pages are stored in a per-mapping radix tree, which is405  * rooted at mapping->page_tree, and indexed by offset.406  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space407  * lists, we instead now tag pages as dirty/writeback in the radix tree.408  *409  * All pagecache pages may be subject to I/O:410  * - inode pages may need to be read from disk,411  * - inode pages which have been modified and are MAP_SHARED may need412  *   to be written back to the inode on disk,413  * - anonymous pages (including MAP_PRIVATE file mappings) which have been414  *   modified may need to be swapped out to swap space and (later) to be read415  *   back into memory.416  */417 418 /*419  * The zone field is never updated after free_area_init_core()420  * sets it, so none of the operations on it need to be atomic.421  */422 423 424 /*425  * page->flags layout:426  *427  * There are three possibilities for how page->flags get428  * laid out.  The first is for the normal case, without429  * sparsemem.  The second is for sparsemem when there is430  * plenty of space for node and section.  The last is when431  * we have run out of space and have to fall back to an432  * alternate (slower) way of determining the node.433  *434  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |435  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |436  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |437  */438 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)439 #define SECTIONS_WIDTH          SECTIONS_SHIFT440 #else441 #define SECTIONS_WIDTH          0442 #endif443 444 #define ZONES_WIDTH             ZONES_SHIFT445 446 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS447 #define NODES_WIDTH             NODES_SHIFT448 #else449 #ifdef CONFIG_SPARSEMEM_VMEMMAP450 #error "Vmemmap: No space for nodes field in page flags"451 #endif452 #define NODES_WIDTH             0453 #endif454 455 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */456 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)457 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)458 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)459 460 /*461  * We are going to use the flags for the page to node mapping if its in462  * there.  This includes the case where there is no node, so it is implicit.463  */464 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)465 #define NODE_NOT_IN_PAGE_FLAGS466 #endif467 468 #ifndef PFN_SECTION_SHIFT469 #define PFN_SECTION_SHIFT 0470 #endif471 472 /*473  * Define the bit shifts to access each section.  For non-existant474  * sections we define the shift as 0; that plus a 0 mask ensures475  * the compiler will optimise away reference to them.476  */477 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))478 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))479 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))480 481 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */482 #ifdef NODE_NOT_IN_PAGEFLAGS483 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)484 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? 485                                                 SECTIONS_PGOFF : ZONES_PGOFF)486 #else487 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)488 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? 489                                                 NODES_PGOFF : ZONES_PGOFF)490 #endif491 492 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))493 494 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS495 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS496 #endif497 498 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)499 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)500 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)501 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)502 503 static inline enum zone_type page_zonenum(struct page *page)504 {505         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;506 }507 508 /*509  * The identification function is only used by the buddy allocator for510  * determining if two pages could be buddies. We are not really511  * identifying a zone since we could be using a the section number512  * id if we have not node id available in page flags.513  * We guarantee only that it will return the same value for two514  * combinable pages in a zone.515  */516 static inline int page_zone_id(struct page *page)517 {518         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;519 }520 521 static inline int zone_to_nid(struct zone *zone)522 {523 #ifdef CONFIG_NUMA524         return zone->node;525 #else526         return 0;527 #endif528 }529 530 #ifdef NODE_NOT_IN_PAGE_FLAGS531 extern int page_to_nid(struct page *page);532 #else533 static inline int page_to_nid(struct page *page)534 {535         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;536 }537 #endif538 539 static inline struct zone *page_zone(struct page *page)540 {541         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];542 }543 544 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)545 static inline unsigned long page_to_section(struct page *page)546 {547         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;548 }549 #endif550 551 static inline void set_page_zone(struct page *page, enum zone_type zone)552 {553         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);554         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;555 }556 557 static inline void set_page_node(struct page *page, unsigned long node)558 {559         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);560         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;561 }562 563 static inline void set_page_section(struct page *page, unsigned long section)564 {565         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);566         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;567 }568 569 static inline void set_page_links(struct page *page, enum zone_type zone,570         unsigned long node, unsigned long pfn)571 {572         set_page_zone(page, zone);573         set_page_node(page, node);574         set_page_section(page, pfn_to_section_nr(pfn));575 }576 577 /*578  * If a hint addr is less than mmap_min_addr change hint to be as579  * low as possible but still greater than mmap_min_addr580  */581 static inline unsigned long round_hint_to_min(unsigned long hint)582 {583         hint &= PAGE_MASK;584         if (((void *)hint != NULL) &&585             (hint < mmap_min_addr))586                 return PAGE_ALIGN(mmap_min_addr);587         return hint;588 }589 590 /*591  * Some inline functions in vmstat.h depend on page_zone()592  */593 #include <linux/vmstat.h>594 595 static __always_inline void *lowmem_page_address(struct page *page)596 {597         return __va(page_to_pfn(page) << PAGE_SHIFT);598 }599 600 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)601 #define HASHED_PAGE_VIRTUAL602 #endif603 604 #if defined(WANT_PAGE_VIRTUAL)605 #define page_address(page) ((page)->virtual)606 #define set_page_address(page, address)                 607         do {                                            608                 (page)->virtual = (address);            609         } while(0)610 #define page_address_init()  do { } while(0)611 #endif612 613 #if defined(HASHED_PAGE_VIRTUAL)614 void *page_address(struct page *page);615 void set_page_address(struct page *page, void *virtual);616 void page_address_init(void);617 #endif618 619 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)620 #define page_address(page) lowmem_page_address(page)621 #define set_page_address(page, address)  do { } while(0)622 #define page_address_init()  do { } while(0)623 #endif624 625 /*626  * On an anonymous page mapped into a user virtual memory area,627  * page->mapping points to its anon_vma, not to a struct address_space;628  * with the PAGE_MAPPING_ANON bit set to distinguish it.629  *630  * Please note that, confusingly, "page_mapping" refers to the inode631  * address_space which maps the page from disk; whereas "page_mapped"632  * refers to user virtual address space into which the page is mapped.633  */634 #define PAGE_MAPPING_ANON       1635 636 extern struct address_space swapper_space;637 static inline struct address_space *page_mapping(struct page *page)638 {639         struct address_space *mapping = page->mapping;640 641         VM_BUG_ON(PageSlab(page));642 #ifdef CONFIG_SWAP643         if (unlikely(PageSwapCache(page)))644                 mapping = &swapper_space;645         else646 #endif647         if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))648                 mapping = NULL;649         return mapping;650 }651 652 static inline int PageAnon(struct page *page)653 {654         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;655 }656 657 /*658  * Return the pagecache index of the passed page.  Regular pagecache pages659  * use ->index whereas swapcache pages use ->private660  */661 static inline pgoff_t page_index(struct page *page)662 {663         if (unlikely(PageSwapCache(page)))664                 return page_private(page);665         return page->index;666 }667 668 /*669  * The atomic page->_mapcount, like _count, starts from -1:670  * so that transitions both from it and to it can be tracked,671  * using atomic_inc_and_test and atomic_add_negative(-1).672  */673 static inline void reset_page_mapcount(struct page *page)674 {675         atomic_set(&(page)->_mapcount, -1);676 }677 678 static inline int page_mapcount(struct page *page)679 {680         return atomic_read(&(page)->_mapcount) + 1;681 }682 683 /*684  * Return true if this page is mapped into pagetables.685  */686 static inline int page_mapped(struct page *page)687 {688         return atomic_read(&(page)->_mapcount) >= 0;689 }690 691 /*692  * Different kinds of faults, as returned by handle_mm_fault().693  * Used to decide whether a process gets delivered SIGBUS or694  * just gets major/minor fault counters bumped up.695  */696 697 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */698 699 #define VM_FAULT_OOM    0x0001700 #define VM_FAULT_SIGBUS 0x0002701 #define VM_FAULT_MAJOR  0x0004702 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */703 704 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */705 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */706 707 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS)708 709 /*710  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.711  */712 extern void pagefault_out_of_memory(void);713 714 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)715 716 extern void show_free_areas(void);717 718 #ifdef CONFIG_SHMEM719 extern int shmem_lock(struct file *file, int lock, struct user_struct *user);720 #else721 static inline int shmem_lock(struct file *file, int lock,722                             struct user_struct *user)723 {724         return 0;725 }726 #endif727 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);728 729 int shmem_zero_setup(struct vm_area_struct *);730 731 #ifndef CONFIG_MMU732 extern unsigned long shmem_get_unmapped_area(struct file *file,733                                              unsigned long addr,734                                              unsigned long len,735                                              unsigned long pgoff,736                                              unsigned long flags);737 #endif738 739 extern int can_do_mlock(void);740 extern int user_shm_lock(size_t, struct user_struct *);741 extern void user_shm_unlock(size_t, struct user_struct *);742 743 /*744  * Parameter block passed down to zap_pte_range in exceptional cases.745  */746 struct zap_details {747         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */748         struct address_space *check_mapping;    /* Check page->mapping if set */749         pgoff_t first_index;                    /* Lowest page->index to unmap */750         pgoff_t last_index;                     /* Highest page->index to unmap */751         spinlock_t *i_mmap_lock;                /* For unmap_mapping_range: */752         unsigned long truncate_count;           /* Compare vm_truncate_count */753 };754 755 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,756                 pte_t pte);757 758 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,759                 unsigned long size);760 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,761                 unsigned long size, struct zap_details *);762 unsigned long unmap_vmas(struct mmu_gather **tlb,763                 struct vm_area_struct *start_vma, unsigned long start_addr,764                 unsigned long end_addr, unsigned long *nr_accounted,765                 struct zap_details *);766 767 /**768  * mm_walk - callbacks for walk_page_range769  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry770  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry771  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry772  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry773  * @pte_hole: if set, called for each hole at all levels774  *775  * (see walk_page_range for more details)776  */777 struct mm_walk {778         int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);779         int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);780         int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);781         int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);782         int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);783         struct mm_struct *mm;784         void *private;785 };786 787 int walk_page_range(unsigned long addr, unsigned long end,788                 struct mm_walk *walk);789 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,790                 unsigned long end, unsigned long floor, unsigned long ceiling);791 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,792                         struct vm_area_struct *vma);793 void unmap_mapping_range(struct address_space *mapping,794                 loff_t const holebegin, loff_t const holelen, int even_cows);795 int follow_phys(struct vm_area_struct *vma, unsigned long address,796                 unsigned int flags, unsigned long *prot, resource_size_t *phys);797 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,798                         void *buf, int len, int write);799 800 static inline void unmap_shared_mapping_range(struct address_space *mapping,801                 loff_t const holebegin, loff_t const holelen)802 {803         unmap_mapping_range(mapping, holebegin, holelen, 0);804 }805 806 extern int vmtruncate(struct inode * inode, loff_t offset);807 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);808 809 #ifdef CONFIG_MMU810 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,811                         unsigned long address, int write_access);812 #else813 static inline int handle_mm_fault(struct mm_struct *mm,814                         struct vm_area_struct *vma, unsigned long address,815                         int write_access)816 {817         /* should never happen if there's no MMU */818         BUG();819         return VM_FAULT_SIGBUS;820 }821 #endif822 823 extern int make_pages_present(unsigned long addr, unsigned long end);824 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);825 826 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,827                 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);828 829 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);830 extern void do_invalidatepage(struct page *page, unsigned long offset);831 832 int __set_page_dirty_nobuffers(struct page *page);833 int __set_page_dirty_no_writeback(struct page *page);834 int redirty_page_for_writepage(struct writeback_control *wbc,835                                 struct page *page);836 void account_page_dirtied(struct page *page, struct address_space *mapping);837 int set_page_dirty(struct page *page);838 int set_page_dirty_lock(struct page *page);839 int clear_page_dirty_for_io(struct page *page);840 841 extern unsigned long move_page_tables(struct vm_area_struct *vma,842                 unsigned long old_addr, struct vm_area_struct *new_vma,843                 unsigned long new_addr, unsigned long len);844 extern unsigned long do_mremap(unsigned long addr,845                                unsigned long old_len, unsigned long new_len,846                                unsigned long flags, unsigned long new_addr);847 extern int mprotect_fixup(struct vm_area_struct *vma,848                           struct vm_area_struct **pprev, unsigned long start,849                           unsigned long end, unsigned long newflags);850 851 /*852  * get_user_pages_fast provides equivalent functionality to get_user_pages,853  * operating on current and current->mm (force=0 and doesn't return any vmas).854  *855  * get_user_pages_fast may take mmap_sem and page tables, so no assumptions856  * can be made about locking. get_user_pages_fast is to be implemented in a857  * way that is advantageous (vs get_user_pages()) when the user memory area is858  * already faulted in and present in ptes. However if the pages have to be859  * faulted in, it may turn out to be slightly slower).860  */861 int get_user_pages_fast(unsigned long start, int nr_pages, int write,862                         struct page **pages);863 864 /*865  * A callback you can register to apply pressure to ageable caches.866  *867  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should868  * look through the least-recently-used 'nr_to_scan' entries and869  * attempt to free them up.  It should return the number of objects870  * which remain in the cache.  If it returns -1, it means it cannot do871  * any scanning at this time (eg. there is a risk of deadlock).872  *873  * The 'gfpmask' refers to the allocation we are currently trying to874  * fulfil.875  *876  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is877  * querying the cache size, so a fastpath for that case is appropriate.878  */879 struct shrinker {880         int (*shrink)(int nr_to_scan, gfp_t gfp_mask);881         int seeks;      /* seeks to recreate an obj */882 883         /* These are for internal use */884         struct list_head list;885         long nr;        /* objs pending delete */886 };887 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */888 extern void register_shrinker(struct shrinker *);889 extern void unregister_shrinker(struct shrinker *);890 891 int vma_wants_writenotify(struct vm_area_struct *vma);892 893 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);894 895 #ifdef __PAGETABLE_PUD_FOLDED896 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,897                                                 unsigned long address)898 {899         return 0;900 }901 #else902 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);903 #endif904 905 #ifdef __PAGETABLE_PMD_FOLDED906 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,907                                                 unsigned long address)908 {909         return 0;910 }911 #else912 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);913 #endif914 915 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);916 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);917 918 /*919  * The following ifdef needed to get the 4level-fixup.h header to work.920  * Remove it when 4level-fixup.h has been removed.921  */922 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)923 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)924 {925         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?926                 NULL: pud_offset(pgd, address);927 }928 929 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)930 {931         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?932                 NULL: pmd_offset(pud, address);933 }934 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */935 936 #if USE_SPLIT_PTLOCKS937 /*938  * We tuck a spinlock to guard each pagetable page into its struct page,939  * at page->private, with BUILD_BUG_ON to make sure that this will not940  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).941  * When freeing, reset page->mapping so free_pages_check won't complain.942  */943 #define __pte_lockptr(page)     &((page)->ptl)944 #define pte_lock_init(_page)    do {                                    945         spin_lock_init(__pte_lockptr(_page));                           946 } while (0)947 #define pte_lock_deinit(page)   ((page)->mapping = NULL)948 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})949 #else   /* !USE_SPLIT_PTLOCKS */950 /*951  * We use mm->page_table_lock to guard all pagetable pages of the mm.952  */953 #define pte_lock_init(page)     do {} while (0)954 #define pte_lock_deinit(page)   do {} while (0)955 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})956 #endif /* USE_SPLIT_PTLOCKS */957 958 static inline void pgtable_page_ctor(struct page *page)959 {960         pte_lock_init(page);961         inc_zone_page_state(page, NR_PAGETABLE);962 }963 964 static inline void pgtable_page_dtor(struct page *page)965 {966         pte_lock_deinit(page);967         dec_zone_page_state(page, NR_PAGETABLE);968 }969 970 #define pte_offset_map_lock(mm, pmd, address, ptlp)     971 ({                                                      972         spinlock_t *__ptl = pte_lockptr(mm, pmd);       973         pte_t *__pte = pte_offset_map(pmd, address);    974         *(ptlp) = __ptl;                                975         spin_lock(__ptl);                               976         __pte;                                          977 })978 979 #define pte_unmap_unlock(pte, ptl)      do {            980         spin_unlock(ptl);                               981         pte_unmap(pte);                                 982 } while (0)983 984 #define pte_alloc_map(mm, pmd, address)                 985         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? 986                 NULL: pte_offset_map(pmd, address))987 988 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      989         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? 990                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))991 992 #define pte_alloc_kernel(pmd, address)                  993         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? 994                 NULL: pte_offset_kernel(pmd, address))995 996 extern void free_area_init(unsigned long * zones_size);997 extern void free_area_init_node(int nid, unsigned long * zones_size,998                 unsigned long zone_start_pfn, unsigned long *zholes_size);999 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP1000 /*1001  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its1002  * zones, allocate the backing mem_map and account for memory holes in a more1003  * architecture independent manner. This is a substitute for creating the1004  * zone_sizes[] and zholes_size[] arrays and passing them to1005  * free_area_init_node()1006  *1007  * An architecture is expected to register range of page frames backed by1008  * physical memory with add_active_range() before calling1009  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic1010  * usage, an architecture is expected to do something like1011  *1012  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,1013  *                                                       max_highmem_pfn};1014  * for_each_valid_physical_page_range()1015  *      add_active_range(node_id, start_pfn, end_pfn)1016  * free_area_init_nodes(max_zone_pfns);1017  *1018  * If the architecture guarantees that there are no holes in the ranges1019  * registered with add_active_range(), free_bootmem_active_regions()1020  * will call free_bootmem_node() for each registered physical page range.1021  * Similarly sparse_memory_present_with_active_regions() calls1022  * memory_present() for each range when SPARSEMEM is enabled.1023  *1024  * See mm/page_alloc.c for more information on each function exposed by1025  * CONFIG_ARCH_POPULATES_NODE_MAP1026  */1027 extern void free_area_init_nodes(unsigned long *max_zone_pfn);1028 extern void add_active_range(unsigned int nid, unsigned long start_pfn,1029                                         unsigned long end_pfn);1030 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,1031                                         unsigned long end_pfn);1032 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,1033                                         unsigned long end_pfn);1034 extern void remove_all_active_ranges(void);1035 extern unsigned long absent_pages_in_range(unsigned long start_pfn,1036                                                 unsigned long end_pfn);1037 extern void get_pfn_range_for_nid(unsigned int nid,1038                         unsigned long *start_pfn, unsigned long *end_pfn);1039 extern unsigned long find_min_pfn_with_active_regions(void);1040 extern void free_bootmem_with_active_regions(int nid,1041                                                 unsigned long max_low_pfn);1042 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);1043 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);1044 extern void sparse_memory_present_with_active_regions(int nid);1045 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */1046 1047 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && 1048     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)1049 static inline int __early_pfn_to_nid(unsigned long pfn)1050 {1051         return 0;1052 }1053 #else1054 /* please see mm/page_alloc.c */1055 extern int __meminit early_pfn_to_nid(unsigned long pfn);1056 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID1057 /* there is a per-arch backend function. */1058 extern int __meminit __early_pfn_to_nid(unsigned long pfn);1059 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */1060 #endif1061 1062 extern void set_dma_reserve(unsigned long new_dma_reserve);1063 extern void memmap_init_zone(unsigned long, int, unsigned long,1064                                 unsigned long, enum memmap_context);1065 extern void setup_per_zone_pages_min(void);1066 extern void mem_init(void);1067 extern void __init mmap_init(void);1068 extern void show_mem(void);1069 extern void si_meminfo(struct sysinfo * val);1070 extern void si_meminfo_node(struct sysinfo *val, int nid);1071 extern int after_bootmem;1072 1073 #ifdef CONFIG_NUMA1074 extern void setup_per_cpu_pageset(void);1075 #else1076 static inline void setup_per_cpu_pageset(void) {}1077 #endif1078 1079 /* nommu.c */1080 extern atomic_long_t mmap_pages_allocated;1081 1082 /* prio_tree.c */1083 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);1084 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);1085 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);1086 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,1087         struct prio_tree_iter *iter);1088 1089 #define vma_prio_tree_foreach(vma, iter, root, begin, end)      1090         for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   1091                 (vma = vma_prio_tree_next(vma, iter)); )1092 1093 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,1094                                         struct list_head *list)1095 {1096         vma->shared.vm_set.parent = NULL;1097         list_add_tail(&vma->shared.vm_set.list, list);1098 }1099 1100 /* mmap.c */1101 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);1102 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,1103         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);1104 extern struct vm_area_struct *vma_merge(struct mm_struct *,1105         struct vm_area_struct *prev, unsigned long addr, unsigned long end,1106         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,1107         struct mempolicy *);1108 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);1109 extern int split_vma(struct mm_struct *,1110         struct vm_area_struct *, unsigned long addr, int new_below);1111 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);1112 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,1113         struct rb_node **, struct rb_node *);1114 extern void unlink_file_vma(struct vm_area_struct *);1115 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,1116         unsigned long addr, unsigned long len, pgoff_t pgoff);1117 extern void exit_mmap(struct mm_struct *);1118 1119 extern int mm_take_all_locks(struct mm_struct *mm);1120 extern void mm_drop_all_locks(struct mm_struct *mm);1121 1122 #ifdef CONFIG_PROC_FS1123 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */1124 extern void added_exe_file_vma(struct mm_struct *mm);1125 extern void removed_exe_file_vma(struct mm_struct *mm);1126 #else1127 static inline void added_exe_file_vma(struct mm_struct *mm)1128 {}1129 1130 static inline void removed_exe_file_vma(struct mm_struct *mm)1131 {}1132 #endif /* CONFIG_PROC_FS */1133 1134 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);1135 extern int install_special_mapping(struct mm_struct *mm,1136                                    unsigned long addr, unsigned long len,1137                                    unsigned long flags, struct page **pages);1138 1139 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);1140 1141 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,1142         unsigned long len, unsigned long prot,1143         unsigned long flag, unsigned long pgoff);1144 extern unsigned long mmap_region(struct file *file, unsigned long addr,1145         unsigned long len, unsigned long flags,1146         unsigned int vm_flags, unsigned long pgoff);1147 1148 static inline unsigned long do_mmap(struct file *file, unsigned long addr,1149         unsigned long len, unsigned long prot,1150         unsigned long flag, unsigned long offset)1151 {1152         unsigned long ret = -EINVAL;1153         if ((offset + PAGE_ALIGN(len)) < offset)1154                 goto out;1155         if (!(offset & ~PAGE_MASK))1156                 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);1157 out:1158         return ret;1159 }1160 1161 extern int do_munmap(struct mm_struct *, unsigned long, size_t);1162 1163 extern unsigned long do_brk(unsigned long, unsigned long);1164 1165 /* filemap.c */1166 extern unsigned long page_unuse(struct page *);1167 extern void truncate_inode_pages(struct address_space *, loff_t);1168 extern void truncate_inode_pages_range(struct address_space *,1169                                        loff_t lstart, loff_t lend);1170 1171 /* generic vm_area_ops exported for stackable file systems */1172 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);1173 1174 /* mm/page-writeback.c */1175 int write_one_page(struct page *page, int wait);1176 void task_dirty_inc(struct task_struct *tsk);1177 1178 /* readahead.c */1179 #define VM_MAX_READAHEAD        128     /* kbytes */1180 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */1181 1182 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,1183                         pgoff_t offset, unsigned long nr_to_read);1184 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,1185                         pgoff_t offset, unsigned long nr_to_read);1186 1187 void page_cache_sync_readahead(struct address_space *mapping,1188                                struct file_ra_state *ra,1189                                struct file *filp,1190                                pgoff_t offset,1191                                unsigned long size);1192 1193 void page_cache_async_readahead(struct address_space *mapping,1194                                 struct file_ra_state *ra,1195                                 struct file *filp,1196                                 struct page *pg,1197                                 pgoff_t offset,1198                                 unsigned long size);1199 1200 unsigned long max_sane_readahead(unsigned long nr);1201 1202 /* Do stack extension */1203 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);1204 #ifdef CONFIG_IA641205 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);1206 #endif1207 extern int expand_stack_downwards(struct vm_area_struct *vma,1208                                   unsigned long address);1209 1210 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */1211 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);1212 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,1213                                              struct vm_area_struct **pprev);1214 1215 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,1216    NULL if none.  Assume start_addr < end_addr. */1217 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)1218 {1219         struct vm_area_struct * vma = find_vma(mm,start_addr);1220 1221         if (vma && end_addr <= vma->vm_start)1222                 vma = NULL;1223         return vma;1224 }1225 1226 static inline unsigned long vma_pages(struct vm_area_struct *vma)1227 {1228         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;1229 }1230 1231 pgprot_t vm_get_page_prot(unsigned long vm_flags);1232 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);1233 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,1234                         unsigned long pfn, unsigned long size, pgprot_t);1235 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);1236 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,1237                         unsigned long pfn);1238 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,1239                         unsigned long pfn);1240 1241 struct page *follow_page(struct vm_area_struct *, unsigned long address,1242                         unsigned int foll_flags);1243 #define FOLL_WRITE      0x01    /* check pte is writable */1244 #define FOLL_TOUCH      0x02    /* mark page accessed */1245 #define FOLL_GET        0x04    /* do get_page on page */1246 #define FOLL_ANON       0x08    /* give ZERO_PAGE if no pgtable */1247 1248 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,1249                         void *data);1250 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,1251                                unsigned long size, pte_fn_t fn, void *data);1252 1253 #ifdef CONFIG_PROC_FS1254 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);1255 #else1256 static inline void vm_stat_account(struct mm_struct *mm,1257                         unsigned long flags, struct file *file, long pages)1258 {1259 }1260 #endif /* CONFIG_PROC_FS */1261 1262 #ifdef CONFIG_DEBUG_PAGEALLOC1263 extern int debug_pagealloc_enabled;1264 1265 extern void kernel_map_pages(struct page *page, int numpages, int enable);1266 1267 static inline void enable_debug_pagealloc(void)1268 {1269         debug_pagealloc_enabled = 1;1270 }1271 #ifdef CONFIG_HIBERNATION1272 extern bool kernel_page_present(struct page *page);1273 #endif /* CONFIG_HIBERNATION */1274 #else1275 static inline void1276 kernel_map_pages(struct page *page, int numpages, int enable) {}1277 static inline void enable_debug_pagealloc(void)1278 {1279 }1280 #ifdef CONFIG_HIBERNATION1281 static inline bool kernel_page_present(struct page *page) { return true; }1282 #endif /* CONFIG_HIBERNATION */1283 #endif1284 1285 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);1286 #ifdef  __HAVE_ARCH_GATE_AREA1287 int in_gate_area_no_task(unsigned long addr);1288 int in_gate_area(struct task_struct *task, unsigned long addr);1289 #else1290 int in_gate_area_no_task(unsigned long addr);1291 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})1292 #endif  /* __HAVE_ARCH_GATE_AREA */1293 1294 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,1295                                         void __user *, size_t *, loff_t *);1296 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,1297                         unsigned long lru_pages);1298 1299 #ifndef CONFIG_MMU1300 #define randomize_va_space 01301 #else1302 extern int randomize_va_space;1303 #endif1304 1305 const char * arch_vma_name(struct vm_area_struct *vma);1306 void print_vma_addr(char *prefix, unsigned long rip);1307 1308 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);1309 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);1310 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);1311 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);1312 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);1313 void *vmemmap_alloc_block(unsigned long size, int node);1314 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);1315 int vmemmap_populate_basepages(struct page *start_page,1316                                                 unsigned long pages, int node);1317 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);1318 void vmemmap_populate_print_last(void);1319 1320 extern void *alloc_locked_buffer(size_t size);1321 extern void free_locked_buffer(void *buffer, size_t size);1322 extern void release_locked_buffer(void *buffer, size_t size);1323 #endif /* __KERNEL__ */1324 #endif /* _LINUX_MM_H */1325
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
内存与I/O访问
linux vmalloc
linux 虚拟内存使用
深入理解Linux内核之mmu-gather操作
linux mmap 详解
Linux内存管理:Vmalloc - 博客 - 伯乐在线
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服