打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
Bioconversion of wastewater

Bioconversion of wastewater-derived cresols to methyl muconic acids for use in performance-advantaged bioproducts†

Author affiliations

Abstract

Catalytic fast pyrolysis of biomass is a promising technology to generate biofuel blendstocks. This process generates a carbon-rich wastewater, which represents a loss of carbon that could be converted to co-products. Here, we explored the biological conversion of methyl phenols (cresols), a major component of biomass pyrolysis wastewater, into 2-methyl and 3-methyl muconic acids for use as polymer building blocks and plasticizers. We engineered Pseudomonas putida KT2440 to convert all three cresol isomers, o-, m-, and p-cresol, into their methyl muconic acid counterparts via the heterologous aromatic hydroxylase DmpKLMNOP from Pseudomonas putida CF600. We optimized conversion of cresols by expressing a heterologous (methyl)catechol dioxygenase ClcA from Rhodococcus opacus 1CP, followed by proof-of-concept fed-batch bioreactor cultivations. Methyl muconic acids and the hydrogenated methyl adipic acids were incorporated into nylons and plasticizers to evaluate potential performance advantages relative to existing materials. Methyl muconic acids in nylon-6,6 analogs substantially reduced melting and glass transition temperatures and enable post-polymerization modifications, and incorporating methyl adipic acid into nylon-6,6 analogs leads to a slightly reduced glass transition temperature and a 12% reduction in water permeability relative to nylon-6,6. When methyl diacids were incorporated into plasticizers for poly(vinyl chloride), they exhibit lower glass transition temperatures at the same mass loadings as phthalic acid and adipic acid-based plasticizers. The methyl diacids were also predicted to exhibit reduced health and environmental risks compared to phthalic acid. Overall, this study encompasses the selection of a target product from an exemplary waste stream to the demonstration of multiple industrially relevant performance advantages relative to petroleum-derived analogs and highlights the potential for biological waste stream valorization.

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
pa6
Uridine-5-oxyacetic-acid-methyl-ester-技术资料-MCE
Polymer Source蒽基化学品解决方案
碳中和:一个面向可持续污水处理厂可以实现的目标
常见化学品CAS号列表
尼泊金
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服