打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
内核并发控制---原子操作

定义在头文件asm/atomic.h中;
原子操作指的是在执行过程中不会被别的代码路径所打断的操作;
Linux内核提供了一系列的函数来实现内核中的原子操作,这些函数又分为两类,分别针对位变量和整型变量进行原子操作;它们的共同点是:在任何情况下操作都是原子的,内核代码可以安全地调用它们而不会被打断;位变量和整型变量的原子操作都依赖于底层CPU的原子操作来实现,因此所有这些函数都是与CPU架构密切相关;
使用原子变量的操作,可以使设备最多只能被一个进程打开;
一、整型原子变量操作
1).设置原子变量的值:
void atomic_set(atomic_t* v, int i); //设置原子变量v的值为i;
atomic_t v = ATOMIC_INIT(0); //定义原子变量v,并初始化为0;
2).获取原子变量的值:
atomic_read(atomic_t* v); //返回原子变量v的值;
3).原子变量加/减:
void atomic_add(int i, atomic_t* v); //原子变量v增加i;
void atomic_sub(int i, atomic_t* v); //原子变量v减少i;
4).原子变量自增/自减:
void atomic_inc(atomic_t* v); //原子变量增加1;
void atomic_dec(atomic_t* v); //原子变量自减1;
5).操作并测试:
int atomic_inc_and_test(atomic_t* v);        //先自增1,然后测试其值是否为0,若为0,则返回true,否则返回false;
int atomic_dec_and_test(atomic_t* v);        //先自减1,然后测试其值是否为0,若为0,则返回true,否则返回false;
int atomic_sub_and_test(int i, atomic_t* v); //先加i,然后测试其值是否为0,若为0,则返回true,否则返回false;
6).操作并返回:
int atomic_add_return(int i, atomic_t* v);   //v的值加i后返回新的值;
int atomic_sub_return(int i, atomic_t* v);   //v的值减i后返回新的值;
int atomic_inc_return(atomic_t* v); //v的值自增1后返回新的值;
int atomic_dec_return(atomic_t* v); //v的值自减1后返回新的值;
二、位原子变量操作
1).设置/清除位:
void set_bit(int nr, volatile void* addr);    //设置地址addr的第nr位,所谓设置位,就是把位写为1;
void clear_bit(int nr, volatile void* addr);  //清除地址addr的第nr位,所谓清除位,就是把位写为0;
2).改变位:
void change_bit(int nr, volatile void* addr); //把地址addr的第nr位反转;
3).测试位:
int test_bit(int nr, volatile void* addr);    //返回地址addr的第nr位;
4).测试并操作位:
int test_and_set_bit(int nr, volatile void* addr);    //测试并设置位;若addr的第nr位非0,则返回true; 若addr的第nr位为0,则返回false;
int test_and_clear_bit(int nr, volatile void* addr);  //测试并清除位;若addr的第nr位非0,则返回true; 若addr的第nr位为0,则返回false;
int test_and_change_bit(int nr, volatile void* addr); //测试并反转位;若addr的第nr位非0,则返回true; 若addr的第nr位为0,则返回false;
注意:位变量的操作函数中的参数nr的取值从0开始计算:[0,7]或[0,15]或[0,31]或[0,63];
例子:
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/delay.h>

//这三个头文件与内核线程的使用有关;
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/err.h>

//原子操作相关
#include <asm/atomic.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("*************");
MODULE_VERSION("2.6.35.000");

static int sleep_time = (1*10*HZ);
static atomic_t shared_res;
static unsigned int bit_var = 3;

//STEP5:实现线程函数
static int thread_process1(void* param)
{
int val = 0, ret = 0;
while(1)
{
set_current_state(TASK_UNINTERRUPTIBLE);

if(kthread_should_stop())
{
printk("kernel thread '%s' should stop;file:%s;line:%d\n", __FUNCTION__, __FILE__, __LINE__);
break;
}

set_bit(0, (volatile void*)&bit_var);
printk("%s: set bit_var = %u;\n", __FUNCTION__, bit_var);

clear_bit(0, (volatile void*)&bit_var);
printk("%s: clear bit_var = %u;\n", __FUNCTION__, bit_var);

//atomic_add(1, &shared_res);
//val = atomic_read(&shared_res);
//val = atomic_add_return(1, &shared_res);
//val = atomic_inc_return(&shared_res);
ret = atomic_inc_and_test(&shared_res);
val = atomic_read(&shared_res);
printk("%s: shared resource = %d, true=%d;\n%s", __FUNCTION__, val, ret, ((val % 3) ? "" : "\n"));

mdelay(sleep_time);
}
return 123;
};

static int thread_process2(void* param)
{
int val = 0, ret = 0;
while(1)
{
set_current_state(TASK_UNINTERRUPTIBLE);

if(kthread_should_stop())
{
printk("kernel thread '%s' should stop;file:%s;line:%d\n", __FUNCTION__, __FILE__, __LINE__);
break;
}

set_bit(0, (volatile void*)&bit_var);
printk("%s: set bit_var = %u;\n", __FUNCTION__, bit_var);

clear_bit(0, (volatile void*)&bit_var);
printk("%s: clear bit_var = %u;\n", __FUNCTION__, bit_var);

//atomic_add(1, &shared_res);
//val = atomic_read(&shared_res);
//val = atomic_add_return(1, &shared_res);
//val = atomic_inc_return(&shared_res);
ret = atomic_inc_and_test(&shared_res);
val = atomic_read(&shared_res);
printk("%s: shared resource = %d, true=%d;\n%s", __FUNCTION__, val, ret, ((val % 3) ? "" : "\n"));

msleep(sleep_time);
}
return 456;
};

static int thread_process3(void* param)
{
int val = 0, ret = 0;
while(1)
{
set_current_state(TASK_UNINTERRUPTIBLE);

if(kthread_should_stop())
{
printk("kernel thread '%s' should stop;file:%s;line:%d\n", __FUNCTION__, __FILE__, __LINE__);
break;
}

set_bit(0, (volatile void*)&bit_var);
printk("%s: set bit_var = %u;\n", __FUNCTION__, bit_var);

clear_bit(0, (volatile void*)&bit_var);
printk("%s: clear bit_var = %u;\n", __FUNCTION__, bit_var);

//atomic_add(1, &shared_res);
//val = atomic_read(&shared_res);
//val = atomic_add_return(1, &shared_res);
//val = atomic_inc_return(&shared_res);
ret = atomic_inc_and_test(&shared_res);
val = atomic_read(&shared_res);
printk("%s: shared resource = %d, true=%d;\n%s", __FUNCTION__, val, ret, ((val % 3) ? "" : "\n"));

msleep(sleep_time);
}
return 789;
};

static struct task_struct* my_thread1 = NULL;
static struct task_struct* my_thread2 = NULL;
static struct task_struct* my_thread3 = NULL;

static int __init study_init(void)
{
int err = 0;
printk("%s\n", __PRETTY_FUNCTION__);

//shared_res = ATOMIC_INIT(0);
//printk("int-atomic ATOMIC_INIT=%d\n", atomic_read(&shared_res));
atomic_set(&shared_res, -100);
printk("int-atomic atomic_set=%d\n", atomic_read(&shared_res));

my_thread1 = kthread_create(thread_process1, NULL, "my_thread1");
if(IS_ERR(my_thread1))
{
err = PTR_ERR(my_thread1);
my_thread1 = NULL;
printk(KERN_ERR "unable to start kernel thread1:%d\n", err);
return err;
}

my_thread2 = kthread_create(thread_process2, NULL, "my_thread2");
if(IS_ERR(my_thread2))
{
err = PTR_ERR(my_thread2);
my_thread2 = NULL;
printk(KERN_ERR "unable to start kernel thread2:%d\n", err);
return err;
}

my_thread3 = kthread_create(thread_process3, NULL, "my_thread3");
if(IS_ERR(my_thread3))
{
err = PTR_ERR(my_thread3);
my_thread3 = NULL;
printk(KERN_ERR "unable to start kernel thread3:%d\n", err);
return err;
}

wake_up_process(my_thread1);
wake_up_process(my_thread2);
wake_up_process(my_thread3);
printk("%s:all kernel thread start;\n", __FUNCTION__);
return 0;
}

static void __exit study_exit(void)
{
int ret = -1;
printk("%s\n",__PRETTY_FUNCTION__);

if(my_thread1)
{
ret = kthread_stop(my_thread1);
my_thread1 = NULL;
printk("kernel thread1 stop,exit code is %d;\n",ret);
}

if(my_thread2)
{
ret = kthread_stop(my_thread2);
my_thread2 = NULL;
printk("kernel thread2 stop,exit code is %d;\n",ret);
}

if(my_thread3)
{
ret = kthread_stop(my_thread3);
my_thread3 = NULL;
printk("kernel thread3 stop,exit code is %d;\n",ret);
}

printk("%s:all kernel thread stop;\n", __FUNCTION__);
}

module_init(study_init);
module_exit(study_exit);

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
加锁的各种选择
Linux内核的原子操作 | Just a dream
线程的应用
linux模块编程(三)——线程的约会completion
Linux内核分析(七)
linux驱动程序中的并发控制
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服